論文の概要: Training-efficient density quantum machine learning
- arxiv url: http://arxiv.org/abs/2405.20237v2
- Date: Fri, 23 May 2025 10:51:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.393186
- Title: Training-efficient density quantum machine learning
- Title(参考訳): トレーニング効率の高い密度量子機械学習
- Authors: Brian Coyle, Snehal Raj, Natansh Mathur, El Amine Cherrat, Nishant Jain, Skander Kazdaghli, Iordanis Kerenidis,
- Abstract要約: 我々は、トレーニング可能なユニタリの混合を準備するモデルファミリーである密度量子ニューラルネットワークを導入する。
このフレームワークは、特に量子ハードウェア上で、表現性と効率的なトレーサビリティのバランスをとる。
- 参考スコア(独自算出の注目度): 2.918930150557355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) requires powerful, flexible and efficiently trainable models to be successful in solving challenging problems. We introduce density quantum neural networks, a model family that prepares mixtures of trainable unitaries, with a distributional constraint over coefficients. This framework balances expressivity and efficient trainability, especially on quantum hardware. For expressivity, the Hastings-Campbell Mixing lemma converts benefits from linear combination of unitaries into density models with similar performance guarantees but shallower circuits. For trainability, commuting-generator circuits enable density model construction with efficiently extractable gradients. The framework connects to various facets of QML including post-variational and measurement-based learning. In classical settings, density models naturally integrate the mixture of experts formalism, and offer natural overfitting mitigation. The framework is versatile - we uplift several quantum models into density versions to improve model performance, or trainability, or both. These include Hamming weight-preserving and equivariant models, among others. Extensive numerical experiments validate our findings.
- Abstract(参考訳): 量子機械学習(QML)は、問題解決に成功するために、強力で柔軟で効率的なトレーニング可能なモデルを必要とする。
本稿では、トレーニング可能なユニタリの混合物を合成するモデルファミリーである密度量子ニューラルネットワークを導入し、係数を分散的に制限する。
このフレームワークは、特に量子ハードウェア上で、表現性と効率的なトレーサビリティのバランスをとる。
表現性のために、Hastings-Campbell Mixing lemmaはユニタリの線形結合による利点を、同様の性能を保証するがより浅い回路を持つ密度モデルに変換する。
トレーニング容易性のために、通勤ジェネレータ回路は効率的に抽出可能な勾配を持つ密度モデル構築を可能にする。
このフレームワークは、変分後および測定に基づく学習を含む、QMLのさまざまな側面に接続する。
古典的な設定では、密度モデルは専門家の形式主義の混合を自然に統合し、自然に過度な緩和を提供する。
フレームワークは多種多様で、モデルのパフォーマンスを改善するために、いくつかの量子モデルを密度バージョンに上げます。
これらにはハミングの重量保存モデルや同変モデルなどが含まれる。
大規模な数値実験により、我々の研究結果が検証された。
関連論文リスト
- LCQNN: Linear Combination of Quantum Neural Networks [7.010027035873597]
量子ニューラルネットワークの線形結合(LCQNN)フレームワークについて述べる。
制御ユニタリの$k$を採用する、あるいはモデルを特定の群理論部分空間に制限するといった構造的選択が、勾配の崩壊を防ぐことを示す。
群行動シナリオでは、対称性を利用して指数関数的に大きい既約部分空間を除外することにより、モデルはバレンプラトーを回避できることを示す。
論文 参考訳(メタデータ) (2025-07-03T17:43:10Z) - Quantum Knowledge Distillation for Large Language Models [10.023534560183919]
大規模言語モデルのための量子知識蒸留モデル(QD-LLM)を提案する。
古典的シミュレーションでは、QD-LLMは複数のテキスト分類タスクにおいていくつかの主流蒸留法より優れている。
得られた回路をQuafuプラットフォームを介してBaihua超伝導量子プロセッサ上に展開し,実用性を評価する。
論文 参考訳(メタデータ) (2025-05-19T14:56:24Z) - A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures [53.273077346444886]
機械学習の原子間ポテンシャル(MLIP)は材料のエネルギー、力、ストレスを予測する。
MLIPにおける重要な設計選択は、不変アーキテクチャと同変アーキテクチャのトレードオフである。
HIENetは、不変層と同変層の両方を統合した、ハイブリッド不変・同変物質間ポテンシャルモデルである。
論文 参考訳(メタデータ) (2025-02-25T18:01:05Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
ノイズの多い中間スケール量子(NISQ)デバイスは、機械学習(ML)モデルのトレーニングデータを生成するために使用される。
NISQアルゴリズムの典型的なノイズを受ける小さなデータセットからニューラルネットワークMLモデルをうまく一般化できることを示す。
本研究は,NISQデバイスを実用量子シミュレーションに活用するための有望な経路であることを示唆する。
論文 参考訳(メタデータ) (2024-09-04T17:59:55Z) - On the relation between trainability and dequantization of variational quantum learning models [1.7999333451993955]
変分量子機械学習(QML)のトレーニング容易性と定式化の関係について検討する。
我々はPQCベースのQMLモデルを構築するためのレシピを紹介した。
しかしながら、我々の研究は、より一般的な構造を見つけるための道のりを指している。
論文 参考訳(メタデータ) (2024-06-11T08:59:20Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
本稿では,量子ニューラルネットワークのための新しい量子ニューラルネットワークモデルを提案する。
我々のモデルは、状態空間のサイズがニューロンの数とともに指数関数的に大きくなるという問題を回避している。
我々は手書き文字認識や他の非線形分類タスクのモデルをベンチマークする。
論文 参考訳(メタデータ) (2023-05-15T11:16:47Z) - Quantum HyperNetworks: Training Binary Neural Networks in Quantum
Superposition [16.1356415877484]
量子コンピュータ上でバイナリニューラルネットワークをトレーニングするメカニズムとして量子ハイパーネットを導入する。
提案手法は, 最適パラメータ, ハイパーパラメータ, アーキテクチャ選択を, 分類問題に対する高い確率で効果的に発見できることを示す。
私たちの統合されたアプローチは、機械学習の分野における他のアプリケーションにとって大きなスコープを提供します。
論文 参考訳(メタデータ) (2023-01-19T20:06:48Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
本研究では、リソース制約のあるデバイスを意図した軽量で強力なモデルであるバイナリニューラルネットワークについて検討する。
トレーニング問題に対する2次非制約バイナリ最適化の定式化を考案する。
問題は難解であり、すなわち、二分重みを推定するコストはネットワークサイズと指数関数的にスケールするが、どのようにして問題を量子アニール器に直接最適化できるかを示す。
論文 参考訳(メタデータ) (2021-07-05T03:20:54Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - The power of quantum neural networks [3.327474729829121]
しかし、短期的には、量子機械学習の利点はあまり明確ではない。
我々は、情報幾何学のツールを使用して、量子モデルと古典モデルの表現可能性の概念を定義します。
量子ニューラルネットワークは、同等の古典的ニューラルネットワークよりもはるかに優れた次元を達成可能であることを示す。
論文 参考訳(メタデータ) (2020-10-30T18:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。