論文の概要: KGLink: A column type annotation method that combines knowledge graph and pre-trained language model
- arxiv url: http://arxiv.org/abs/2406.00318v1
- Date: Sat, 1 Jun 2024 06:28:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:34:33.744933
- Title: KGLink: A column type annotation method that combines knowledge graph and pre-trained language model
- Title(参考訳): KGLink:知識グラフと事前学習言語モデルを組み合わせた列型アノテーション手法
- Authors: Yubo Wang, Hao Xin, Lei Chen,
- Abstract要約: KGLinkは、WikiData KG情報と、テーブル列アノテーションのための事前訓練されたディープラーニング言語モデルを組み合わせる。
本稿では、WikiData KG情報とテーブル列アノテーションのための学習済みディープラーニング言語モデルを組み合わせたKGLinkを提案する。
- 参考スコア(独自算出の注目度): 6.931554076020352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The semantic annotation of tabular data plays a crucial role in various downstream tasks. Previous research has proposed knowledge graph (KG)-based and deep learning-based methods, each with its inherent limitations. KG-based methods encounter difficulties annotating columns when there is no match for column cells in the KG. Moreover, KG-based methods can provide multiple predictions for one column, making it challenging to determine the semantic type with the most suitable granularity for the dataset. This type granularity issue limits their scalability. On the other hand, deep learning-based methods face challenges related to the valuable context missing issue. This occurs when the information within the table is insufficient for determining the correct column type. This paper presents KGLink, a method that combines WikiData KG information with a pre-trained deep learning language model for table column annotation, effectively addressing both type granularity and valuable context missing issues. Through comprehensive experiments on widely used tabular datasets encompassing numeric and string columns with varying type granularity, we showcase the effectiveness and efficiency of KGLink. By leveraging the strengths of KGLink, we successfully surmount challenges related to type granularity and valuable context issues, establishing it as a robust solution for the semantic annotation of tabular data.
- Abstract(参考訳): 表形式のデータのセマンティックアノテーションは、下流の様々なタスクにおいて重要な役割を果たす。
従来の研究では、知識グラフ(KG)に基づく深層学習に基づく手法が提案されており、それぞれに固有の制限がある。
KGをベースとした手法は、KGのカラム細胞にマッチしない場合、カラムに注釈を付けるのが困難である。
さらに、KGベースの手法では、1つの列に対して複数の予測が可能であるため、データセットに最も適した粒度でセマンティックタイプを決定することは困難である。
このタイプの粒度問題はスケーラビリティを制限します。
一方、深層学習に基づく手法は、価値ある文脈不足問題に関連する課題に直面している。
これは、テーブル内の情報が正しい列タイプを決定するのに不十分な場合に発生する。
本稿では,WikiData KG情報とテーブル列アノテーションのための事前学習言語モデルを組み合わせたKGLinkを提案する。
KGLinkの有効性と有効性を示すために,数値列と文字列列を多種多様に包含する広範に使われている表型データセットに関する総合実験を行った。
KGLinkの強みを生かして、我々は、型粒度と貴重なコンテキスト問題に関連する課題を克服し、表データの意味的アノテーションのための堅牢なソリューションとして確立した。
関連論文リスト
- Scalable Representation Learning for Multimodal Tabular Transactions [14.18267117657451]
これらの課題に対して、革新的でスケーラブルなソリューションを提示します。
トランザクションとテキストのモダリティをインターリーブするパラメータ効率の良いデコーダを提案する。
我々は,大規模な合成決済トランザクションデータセット上でのソリューションの有効性を検証した。
論文 参考訳(メタデータ) (2024-10-10T12:18:42Z) - Learning Rules from KGs Guided by Language Models [48.858741745144044]
ルール学習手法は、潜在的に欠落する事実を予測するために適用することができる。
規則のランク付けは、高度に不完全あるいは偏りのあるKGよりも特に難しい。
近年のLanguage Models (LM) の台頭により、いくつかの研究が、LMがKG補完の代替手段として利用できると主張している。
論文 参考訳(メタデータ) (2024-09-12T09:27:36Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KGは、後処理なしで漸進的にトピックに依存しない知識グラフを構築する方法である。
提案手法は,3つのシナリオにまたがるベースライン手法と比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-05T06:49:14Z) - Multi-hop Question Answering over Knowledge Graphs using Large Language Models [1.8130068086063336]
複数のホップを含む知識グラフに答える能力(LLM)を評価する。
我々は、KGのサイズや性質によって、関連する情報をLLMに抽出し、供給するために異なるアプローチが必要であることを示す。
論文 参考訳(メタデータ) (2024-04-30T03:31:03Z) - Text-To-KG Alignment: Comparing Current Methods on Classification Tasks [2.191505742658975]
知識グラフ(KG)は、事実情報の密集した構造化された表現を提供する。
最近の研究は、追加のコンテキストとしてKGから情報を取得するパイプラインモデルの作成に重点を置いている。
現在のメソッドが、アライメントされたサブグラフがクエリに完全に関連しているシナリオとどのように比較されているかは分かっていない。
論文 参考訳(メタデータ) (2023-06-05T13:45:45Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models [76.01814380927507]
KGxBoardは、データの意味のあるサブセットを詳細に評価するためのインタラクティブなフレームワークである。
実験では,KGxBoardを用いることで,標準平均シングルスコアメトリクスでは検出が不可能であったことを強調した。
論文 参考訳(メタデータ) (2022-08-23T15:11:45Z) - Self-Supervised Hyperboloid Representations from Logical Queries over
Knowledge Graphs [18.92547855877845]
知識グラフ(kgs)は、web検索、eコマース、ソーシャルネットワーク、生物学といった現実世界のアプリケーションにおいて、情報ストレージのためのユビキタスな構造である。
表現学習を,翻訳,交叉,結合問合せをkgs上で利用する自己教師付き論理問合せ推論問題として定式化する。
我々は,KG上の正の1次存在条件を用いて,その実体と関係をポインカーボール内のハイパーボロイドとして学習する,新しい自己教師型動的推論フレームワークであるHyperboloid Embeddings (HypE)を提案する。
論文 参考訳(メタデータ) (2020-12-23T23:19:00Z) - Joint Semantics and Data-Driven Path Representation for Knowledge Graph
Inference [60.048447849653876]
我々は,KG埋め込みの枠組みにおける説明可能性と一般化のバランスをとる,新しい共同意味論とデータ駆動経路表現を提案する。
提案手法はリンク予測と経路問合せ応答という2つのタスクのクラスで評価される。
論文 参考訳(メタデータ) (2020-10-06T10:24:45Z) - Cross-lingual Entity Alignment with Incidental Supervision [76.66793175159192]
本稿では,多言語KGとテキストコーパスを共通埋め込み方式で共同で表現する,偶発的に教師付きモデルであるJEANSを提案する。
ベンチマークデータセットの実験では、JEANSがエンティティアライメントとインシデントインシデントインシデントインスペクションの改善を期待できる結果となった。
論文 参考訳(メタデータ) (2020-05-01T01:53:56Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。