論文の概要: Discovering an interpretable mathematical expression for a full wind-turbine wake with artificial intelligence enhanced symbolic regression
- arxiv url: http://arxiv.org/abs/2406.00695v1
- Date: Sun, 2 Jun 2024 10:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:46:38.741792
- Title: Discovering an interpretable mathematical expression for a full wind-turbine wake with artificial intelligence enhanced symbolic regression
- Title(参考訳): 人工知能強化記号レグレッションを用いたフルウインドタービンウェイクの解釈可能な数学的表現の発見
- Authors: Ding Wang, Yuntian Chen, Shiyi Chen,
- Abstract要約: 本稿では,平均速度損失に対する解釈可能な数学的表現を発見するために,遺伝的記号回帰(SR)アルゴリズムを提案する。
提案した数式(方程式)は、高精度で安定なフルウェイク領域の任意の位置における覚醒速度の欠陥を予測できる。
- 参考スコア(独自算出の注目度): 9.62113970975207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of wind power worldwide underscores the critical significance of engineering-focused analytical wake models in both the design and operation of wind farms. These theoretically-derived ana lytical wake models have limited predictive capabilities, particularly in the near-wake region close to the turbine rotor, due to assumptions that do not hold. Knowledge discovery methods can bridge these gaps by extracting insights, adjusting for theoretical assumptions, and developing accurate models for physical processes. In this study, we introduce a genetic symbolic regression (SR) algorithm to discover an interpretable mathematical expression for the mean velocity deficit throughout the wake, a previously unavailable insight. By incorporating a double Gaussian distribution into the SR algorithm as domain knowledge and designing a hierarchical equation structure, the search space is reduced, thus efficiently finding a concise, physically informed, and robust wake model. The proposed mathematical expression (equation) can predict the wake velocity deficit at any location in the full-wake region with high precision and stability. The model's effectiveness and practicality are validated through experimental data and high-fidelity numerical simulations.
- Abstract(参考訳): 世界中の風力発電の急速な拡大は、風力発電の設計と運用の両方において、エンジニアリングに焦点を当てた解析的なウェイクモデルの重要性を浮き彫りにしている。
これらの理論的に派生したアナリサーショナル・ウェイクモデルは、特にタービンローターに近い近ウェイク領域において、保持されない仮定のため、予測能力に制限がある。
知識発見法は、洞察を抽出し、理論的な仮定を調整し、物理的プロセスの正確なモデルを開発することによって、これらのギャップを埋めることができる。
本研究では,これまで利用できなかった平均速度障害に対する解釈可能な数学的表現を見つけるために,遺伝的記号回帰(SR)アルゴリズムを導入する。
二重ガウス分布をSRアルゴリズムにドメイン知識として組み込み、階層的な方程式構造を設計することにより、探索空間を小さくし、簡潔で物理的に情報があり、堅牢なウェイクモデルを見つける。
提案した数式(方程式)は、高精度で安定なフルウェイク領域の任意の位置における覚醒速度の欠陥を予測できる。
本モデルの有効性と実用性は,実験データと高忠実度数値シミュレーションを用いて検証する。
関連論文リスト
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
記号回帰は、データから簡潔で解釈可能な数学的表現を発見する能力のおかげで、科学研究において重要な役割を果たす。
既存のアルゴリズムは、複雑性の問題に対処する際の精度と効率の重要なボトルネックに直面してきた。
本稿では,限定データから汎用数学的表現を効率的に抽出する並列木探索(PTS)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:41:15Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Stochastic parameter reduced-order model based on hybrid machine learning approaches [4.378407481656902]
本稿では,畳み込み型オートエンコーダ-貯水池コンピューティング-Normalizing Flowアルゴリズムの枠組みを構築した。
このフレームワークは潜在状態変数の進化を特徴づけるために使われる。
このようにして、複雑なシステムとその動的挙動を記述するために、データ駆動の減階モデルを構築する。
論文 参考訳(メタデータ) (2024-03-24T06:52:37Z) - Controllable Neural Symbolic Regression [10.128755371375572]
記号回帰では、数学的記号の最小使用量で実験データに適合する解析式を見つけることが目的である。
仮説付きニューラルシンボリック回帰(NSRwH)と呼ばれる新しいニューラルシンボリック回帰法を提案する。
実験により,提案した条件付き深層学習モデルは,精度で非条件付き学習モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-04-20T14:20:48Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - Data-Driven Wind Turbine Wake Modeling via Probabilistic Machine
Learning [0.0]
実世界の光検出・測光(LiDAR)を用いて風車ウェイクを計測し,機械学習を用いて予測的代理モデルを構築する。
提案手法は,高忠実度物理シミュレーションで生成したものよりも安価で高精度に問い合わせることができる風車流速場を高精度に近似するものである。
論文 参考訳(メタデータ) (2021-09-06T14:46:20Z) - Latent Gaussian Model Boosting [0.0]
ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
論文 参考訳(メタデータ) (2021-05-19T07:36:30Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Wave Propagation of Visual Stimuli in Focus of Attention [77.4747032928547]
周囲の視覚環境の変化に対する迅速な反応は、計算資源を視覚領域の最も関連する場所に再配置する効率的な注意機構を必要とする。
本研究は, 営巣動物が提示する有効性と効率性を示す, 生物学的に有望な注目焦点モデルを提案する。
論文 参考訳(メタデータ) (2020-06-19T09:33:21Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。