論文の概要: Harvard Undergraduate Survey on Generative AI
- arxiv url: http://arxiv.org/abs/2406.00833v1
- Date: Sun, 2 Jun 2024 18:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 03:07:06.224273
- Title: Harvard Undergraduate Survey on Generative AI
- Title(参考訳): ハーバード大学の大学院生による生成AIに関する調査
- Authors: Shikoh Hirabayashi, Rishab Jain, Nikola Jurković, Gabriel Wu,
- Abstract要約: ハーバード大学の大学院生の学習習慣,クラス選択,キャリアの見通しに及ぼすAIの影響について検討した。
約25%の学生のために、AIはオフィスの時間と必要な読み上げを代用し始めている。
学生の半数はAIが仕事の見通しに悪影響を及ぼすのではないかと心配しており、半数以上がハーバード大学にAIの将来的な影響についてもっと多くのクラスがあることを望んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How has generative AI impacted the experiences of college students? We study the influence of AI on the study habits, class choices, and career prospects of Harvard undergraduates (n=326), finding that almost 90% of students use generative AI. For roughly 25% of these students, AI has begun to substitute for attending office hours and completing required readings. Half of students are concerned that AI will negatively impact their job prospects, and over half of students wish that Harvard had more classes on the future impacts of AI. We also investigate students' outlook on the broader social implications of AI, finding that half of students are worried that AI will increase economic inequality, and 40% believe that extinction risk from AI should be treated as a global priority with the same urgency as pandemics and nuclear war. Around half of students who have taken a class on AI expect AI to exceed human capabilities on almost all tasks within 30 years. We make some recommendations to the Harvard community in light of these results.
- Abstract(参考訳): 生成AIは大学生の体験にどのように影響したか?
ハーバード大学の大学院生 (n=326) の学習習慣, クラス選択, キャリアへのAIの影響を調べたところ, 学生の90%近くが生成型AIを使用していることがわかった。
これらの学生の約25%のために、AIはオフィスの時間と必要な読み上げを代用し始めている。
学生の半数はAIが仕事の見通しに悪影響を及ぼすのではないかと心配しており、半数以上がハーバード大学にAIの将来的な影響についてもっと多くのクラスがあることを望んでいる。
学生の半数は、AIが経済的不平等を高めることを心配しており、40%は、パンデミックや核戦争と同じ緊急度で、AIによる絶滅リスクを世界的優先事項として扱うべきだと信じている。
AIの授業を受けた学生の約半数は、AIが30年以内にほぼすべてのタスクにおいて人間の能力を上回ることを期待している。
これらの結果を踏まえて、ハーバードコミュニティにいくつか推奨します。
関連論文リスト
- What Do People Think about Sentient AI? [0.0]
先進的AIの話題に関する全国的に代表的な調査データを提示する。
2021年に1波、2023年に2波のデータ収集を行い、AIの幸福に対する心の認識と道徳的懸念は予想以上に高かった。
我々は、AIが賢明になるかどうかに関わらず、議論そのものが人間とコンピュータのインタラクションをオーバーホールするかもしれないと論じる。
論文 参考訳(メタデータ) (2024-07-11T21:04:39Z) - Lifelong learning challenges in the era of artificial intelligence: a computational thinking perspective [0.0]
人工知能(AI)の急速な進歩は、職場での人間とAIのコラボレーションにAIを活用するために必要な教育と労働力のスキルに大きな課題をもたらした。
本稿では,AI時代の生涯学習の課題を,計算的思考の観点から概観する。
論文 参考訳(メタデータ) (2024-05-30T08:46:11Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Thousands of AI Authors on the Future of AI [1.0717301750064765]
ほとんどの回答者は、AIの進歩の長期的な価値についてかなりの不確実性を示した。
半数以上が、AIに関連する6つのシナリオについて、"実質的"または"極端"の懸念が保証されていることを示唆している。
AIの進歩が人類の未来に良くなるかどうかについては意見の相違があった。
論文 参考訳(メタデータ) (2024-01-05T14:53:09Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
1960年には333の研究分野の14%がAIに関連していたが、1972年には全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
1960年には、333の研究分野の14%がAI(コンピュータ科学の多くの分野)に関連していたが、1972年までに全研究分野の半分以上、1986年には80%以上、現在では98%以上まで増加した。
我々は、現在の急上昇の状況が異なっており、学際的AI応用が持続する可能性が高いと結論付けている。
論文 参考訳(メタデータ) (2023-06-15T14:08:07Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Artificial Intelligence and Life in 2030: The One Hundred Year Study on
Artificial Intelligence [74.2630823914258]
このレポートは、AIが今後数年間に影響を及ぼす可能性のある、典型的な都市環境の8つのドメインを調査している。
それは、AIの現状を科学的かつ技術的に正確に描写する一般大衆に提供することを目的としている。
この報告書の費用は、ハーバード大学のBarbara Groszが議長を務めるAI100 Standing Committee(AI100スタンディング委員会)のパネルに提出された。
論文 参考訳(メタデータ) (2022-10-31T18:35:36Z) - Challenges of Artificial Intelligence -- From Machine Learning and
Computer Vision to Emotional Intelligence [0.0]
AIは人間の支配者ではなく、支援者である、と私たちは信じています。
コンピュータビジョンはAIの開発の中心となっている。
感情は人間の知性の中心であるが、AIではほとんど使われていない。
論文 参考訳(メタデータ) (2022-01-05T06:00:22Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
あらゆる分野の連合は、AIの恥ずべき適用に抵抗するために世界中で活動している。
AIアルゴリズムにはバイアスがあり、不正で、乱雑な仮定が埋め込まれています。
AIの最大の貢献の1つは、人類の知恵が地球上でいかに重要かを理解することだ。
論文 参考訳(メタデータ) (2021-07-11T18:51:29Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。