論文の概要: Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
- arxiv url: http://arxiv.org/abs/2406.01528v2
- Date: Sun, 7 Jul 2024 11:30:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 01:20:00.721455
- Title: Physics-Informed Neural Networks for Dynamic Process Operations with Limited Physical Knowledge and Data
- Title(参考訳): 物理知識とデータに制限のある動的プロセス操作のための物理インフォームニューラルネットワーク
- Authors: Mehmet Velioglu, Song Zhai, Sophia Rupprecht, Alexander Mitsos, Andreas Jupke, Manuel Dahmen,
- Abstract要約: 化学工学では、プロセスデータを取得するのが高価であり、複雑な現象を完全にモデル化することは困難である。
特に,直接観測データも方程式も利用できない状態の推定に着目する。
PINNは、測定されていない状態を妥当な精度で推測でき、純粋にデータ駆動モデルよりも低データシナリオでよりよく一般化できる。
- 参考スコア(独自算出の注目度): 38.39977540117143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully model. We explore the use of physics-informed neural networks (PINNs) for dynamic processes with incomplete mechanistic semi-explicit differential-algebraic equation systems and scarce process data. In particular, we focus on estimating states for which neither direct observational data nor constitutive equations are available. We propose an easy-to-apply heuristic to assess whether estimation of such states may be possible. As numerical examples, we consider a continuously stirred tank reactor and a liquid-liquid separator. We find that PINNs can infer unmeasured states with reasonable accuracy, and they generalize better in low-data scenarios than purely data-driven models. We thus show that PINNs are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available, and conclude that they constitute a promising avenue that warrants further investigation.
- Abstract(参考訳): 化学工学では、プロセスデータを取得するのが高価であり、複雑な現象を完全にモデル化することは困難である。
物理インフォームドニューラルネットワーク(PINN)の非完全機械的半特殊微分代数方程式系および不足過程データを用いた動的プロセスへの応用について検討する。
特に,直接観測データも構成方程式も利用できない状態の推定に着目する。
本稿では,そのような状態の推定が可能かどうかを評価するため,容易に適用可能なヒューリスティックを提案する。
数値的な例として, 連続的に沸騰するタンクリアクターと液液分離器について考察する。
PINNは、測定されていない状態を妥当な精度で推測でき、純粋にデータ駆動モデルよりも低データシナリオでよりよく一般化できる。
そこで, PINNは実験データが少なく, 一部しか知られていない機械的記述が利用可能である場合に, プロセスのモデル化が可能であることを示し, さらなる調査を保証できる有望な方法であると結論付けた。
関連論文リスト
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた力学系の同定と推定について検討する。
PINNは、既知の物理法則をニューラルネットワークの損失関数に直接埋め込むことによって、複雑な現象の単純な埋め込みを可能にするユニークな利点を提供する。
その結果、PINNは上記のすべてのタスクに対して、たとえモデルエラーがあっても、効率的なツールを提供することを示した。
論文 参考訳(メタデータ) (2024-10-02T08:58:30Z) - Data Distillation for Neural Network Potentials toward Foundational
Dataset [6.373914211316965]
生成モデルは 迅速に 対象のアプリケーションに 有望な材料を提案できる
しかし、生成モデルによる材料の予測特性は、アブイニシアト計算によって計算された性質と一致しないことが多い。
本研究は, 拡張アンサンブル分子動力学(MD)を用いて, 金属系, ニッケル中の液相および固相の幅広い構成を確保した。
蒸留データからトレーニングしたNNPは,これらの構造が初期データの一部ではないにもかかわらず,異なるエネルギー最小化クローズパック結晶構造を予測できることがわかった。
論文 参考訳(メタデータ) (2023-11-09T14:41:45Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
本稿では,制御方程式の発見のために,PINNにおいて不特定な物理モデルを修正するための一般的な手法を提案する。
我々は、不完全モデルと観測データとの差をモデル化するために、他のディープニューラルネットワーク(DNN)を使用します。
提案手法は, 物理化学的, 生物学的プロセスがよく理解されていない問題における支配方程式の発見に, PINNの応用を拡大すると考えられる。
論文 参考訳(メタデータ) (2023-10-16T19:25:52Z) - Surrogate-data-enriched Physics-Aware Neural Networks [0.0]
そこで我々は,低次モデル (ROM) のような他の代用モデルから得られる,安価だが不正確なデータを用いて,物理認識モデルをどのように豊かにすることができるかを検討する。
概念実証として, 1次元波動方程式を考察し, ROMからの不正確なデータが組み込まれた場合, トレーニング精度が2桁に向上することを示す。
論文 参考訳(メタデータ) (2021-12-10T12:39:07Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。