論文の概要: Judgement Citation Retrieval using Contextual Similarity
- arxiv url: http://arxiv.org/abs/2406.01609v1
- Date: Tue, 28 May 2024 04:22:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-09 15:49:54.106993
- Title: Judgement Citation Retrieval using Contextual Similarity
- Title(参考訳): 文脈的類似性を用いた判断行動検索
- Authors: Akshat Mohan Dasula, Hrushitha Tigulla, Preethika Bhukya,
- Abstract要約: 本稿では,自然言語処理(NLP)と機械学習技術を組み合わせて,訴訟記述の組織化と活用を促進する手法を提案する。
提案手法は,教師なしクラスタリングと教師付き引用検索の2つの主要な目的に対処する。
我々の手法は90.9%という驚くべき精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditionally in the domain of legal research, the retrieval of pertinent citations from intricate case descriptions has demanded manual effort and keyword-based search applications that mandate expertise in understanding legal jargon. Legal case descriptions hold pivotal information for legal professionals and researchers, necessitating more efficient and automated approaches. We propose a methodology that combines natural language processing (NLP) and machine learning techniques to enhance the organization and utilization of legal case descriptions. This approach revolves around the creation of textual embeddings with the help of state-of-art embedding models. Our methodology addresses two primary objectives: unsupervised clustering and supervised citation retrieval, both designed to automate the citation extraction process. Although the proposed methodology can be used for any dataset, we employed the Supreme Court of The United States (SCOTUS) dataset, yielding remarkable results. Our methodology achieved an impressive accuracy rate of 90.9%. By automating labor-intensive processes, we pave the way for a more efficient, time-saving, and accessible landscape in legal research, benefiting legal professionals, academics, and researchers.
- Abstract(参考訳): 伝統的に、法律研究の分野では、複雑な事例記述からの関連する引用の検索は、法的用語を理解する専門知識を委任する手作業やキーワードベースの検索アプリケーションを必要としている。
法的ケース記述は、法律専門家や研究者にとって重要な情報を保持し、より効率的で自動化されたアプローチを必要とする。
本稿では,自然言語処理(NLP)と機械学習技術を組み合わせて,訴訟記述の組織化と活用を促進する手法を提案する。
このアプローチは、最先端の埋め込みモデルの助けを借りて、テキスト埋め込みの作成を中心に展開される。
提案手法は,非教師付きクラスタリングと教師付き引用検索の2つの主要な目的に対処する。
提案手法は任意のデータセットに使用することができるが,米国最高裁判所(SCOTUS)データセットを用い,顕著な結果を得た。
我々の手法は90.9%という驚くべき精度を達成した。
労働集約的なプロセスを自動化することによって、法律研究においてより効率的で時間節約し、アクセスしやすくする方法を開拓し、法律専門家、学者、研究者に恩恵を与えます。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
LLM-Duoという,プログレッシブプロンプトアルゴリズムとデュアルエージェントシステムを組み合わせた,大規模言語モデル(LLM)に基づく新しいフレームワークを提案する。
言語治療領域における64,177論文からの2,421件の介入を同定した。
論文 参考訳(メタデータ) (2024-08-20T16:42:23Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
本研究は, 英国裁判所判決の大規模コーパスから, 判例, 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、 判例、
我々は、ケンブリッジ法コーパス356,011英国の裁判所決定を用いて、大きな言語モデルは、キーワードに対して重み付けされたF1スコアが0.94対0.78であると判断する。
我々は,3,102件の要約判断事例を同定し抽出し,その分布を時間的範囲の様々な英国裁判所にマップできるようにする。
論文 参考訳(メタデータ) (2024-03-04T10:13:30Z) - A Deep Learning-Based System for Automatic Case Summarization [2.9141777969894966]
本稿では,効率的な自動ケース要約のためのディープラーニングに基づくシステムを提案する。
このシステムは、長い訴訟文書の簡潔かつ関連する要約を生成するための教師なしおよび教師なしの両方の方法を提供する。
今後の研究は、要約技術の改良と、我々の手法を他の種類の法的テキストに適用することに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-13T01:18:10Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Datasets for Portuguese Legal Semantic Textual Similarity: Comparing
weak supervision and an annotation process approaches [1.9244230111838758]
ブラジルの司法評議会は、デジタル化の文書化とプロセスに関する正式なガイダンスを決議469/2022に制定した。
この記事では、法的ドメインからの4つのデータセットをコントリビュートする。2つはドキュメントとメタデータを持つが、ラベル付けされていない。
基礎的真理ラベルの分析は、ドメインの専門家にとってもドメインテキストのセマンティック分析が困難であることを強調している。
論文 参考訳(メタデータ) (2023-05-29T18:27:10Z) - JNLP Team: Deep Learning Approaches for Legal Processing Tasks in COLIEE
2021 [1.8700700550095686]
COLIEEは、自動コンピュータ化された法律テキスト処理における毎年のコンペティションである。
本稿では,法律文書処理における深層学習の手法と実験結果について報告する。
論文 参考訳(メタデータ) (2021-06-25T03:31:12Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。