Self-Improving Robust Preference Optimization
- URL: http://arxiv.org/abs/2406.01660v4
- Date: Fri, 11 Apr 2025 23:24:37 GMT
- Title: Self-Improving Robust Preference Optimization
- Authors: Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier Pietquin, Mohammad Gheshlaghi Azar,
- Abstract summary: Online and offline RLHF methods have been highly successful in aligning AI with human preferences.<n>We propose Self-Improving Robust Preference Optimization (SRPO), a practical and mathematically principled offline RLHF framework.<n>We show that SRPO can be efficiently optimized using standard supervised learning techniques at scale.
- Score: 22.493029742076605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online and offline RLHF methods, such as PPO and DPO, have been highly successful in aligning AI with human preferences. Despite their success, however, these methods suffer from fundamental limitations: (a) Models trained with RLHF can learn from mistakes or negative examples through RL mechanism or contrastive loss during training. However, at inference time, they lack an innate self-improvement mechanism for error corrections. (b) The optimal solution of existing methods is highly task-dependent, making it difficult for them to generalize to new tasks. To address these challenges, we propose Self-Improving Robust Preference Optimization (SRPO), a practical and mathematically principled offline RLHF framework. The key idea behind SRPO is to cast the problem of learning from human preferences as a self-improvement process, mathematically formulated as a min-max objective that jointly optimizes a self-improvement policy and a generative policy in an adversarial fashion. Crucially, the solution for this optimization problem is independent of the training task, which makes it robust to its changes. We then show that this objective can be reformulated as a non-adversarial offline loss, which can be efficiently optimized using standard supervised learning techniques at scale. To demonstrate SRPO's effectiveness, we evaluate it using AI Win-Rate (WR) against human (GOLD) completions. When tested on the XSum dataset, SRPO outperforms DPO by a margin of 15% after 5 self revisions, achieving an impressive 90% WR. Moreover, on the challenging Arena-Hard prompts, SRPO outperforms both DPO and IPO (by 4% without revision and 6% after a single revision), reaching a 56% WR against against Llama-3.1-8B-Instruct.
Related papers
- Lean and Mean: Decoupled Value Policy Optimization with Global Value Guidance [52.65461207786633]
Policy-based Reinforcement Learning from Human Feedback is essential for aligning large language models with human preferences.
It requires joint training of an actor and critic with a pretrained, fixed reward model for guidance.
We propose textbfDecoupled Value Policy Optimization (DVPO), a lean framework that replaces traditional reward modeling with a pretrained emphglobal value model (GVM)
arXiv Detail & Related papers (2025-02-24T08:11:33Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
We introduce Direct Advantage Policy Optimization (DAPO), a novel step-level offline reinforcement learning algorithm.
DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy.
Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
arXiv Detail & Related papers (2024-12-24T08:39:35Z) - Direct Preference Optimization Using Sparse Feature-Level Constraints [47.15096507230884]
Feature-level constrained Preference Optimization is a novel method designed to simplify the alignment process while ensuring stability.
Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence.
arXiv Detail & Related papers (2024-11-12T07:54:13Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPO is an adaptive preference optimization algorithm for large language models.
It balances the policy model and the reference model to achieve personalized reward margins.
It consistently outperforms DPO and SimPO across various model settings.
arXiv Detail & Related papers (2024-10-14T04:29:57Z) - Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
We present a new offline alignment algorithm, $chi2$-Preference Optimization ($chi$PO)
$chi$PO implements the principle of pessimism in the face of uncertainty via regularization.
It is provably robust to overoptimization and achieves sample-complexity guarantees based on single-policy concentrability.
arXiv Detail & Related papers (2024-07-18T11:08:40Z) - Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning [55.65738319966385]
We propose a novel online algorithm, iterative Nash policy optimization (INPO)
Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses.
With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard.
arXiv Detail & Related papers (2024-06-30T08:00:34Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
Adversarial Policy Optimization (AdvPO) is a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback.
In this paper, we introduce a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model.
arXiv Detail & Related papers (2024-03-08T09:20:12Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - OptiDICE: Offline Policy Optimization via Stationary Distribution
Correction Estimation [59.469401906712555]
We present an offline reinforcement learning algorithm that prevents overestimation in a more principled way.
Our algorithm, OptiDICE, directly estimates the stationary distribution corrections of the optimal policy.
We show that OptiDICE performs competitively with the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-21T00:43:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.