論文の概要: Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law
- arxiv url: http://arxiv.org/abs/2406.02154v1
- Date: Tue, 4 Jun 2024 09:42:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:01:41.455645
- Title: Learning Hamiltonian neural Koopman operator and simultaneously sustaining and discovering conservation law
- Title(参考訳): ハミルトンニューラルクープマン作用素の学習と保存則の維持と発見
- Authors: Jingdong Zhang, Qunxi Zhu, Wei Lin,
- Abstract要約: 本研究では,HNKO(Hanadian Neural Koopman Operator)を提案する。
我々は,HNKOとその拡張性能を,代表的物理系を用いて実証する。
この結果から,基礎となるシステムの事前知識と数学的理論を学習フレームワークに適切に供給することで,物理問題の解法における機械学習の能力を高めることが示唆された。
- 参考スコア(独自算出の注目度): 13.310284460452918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately finding and predicting dynamics based on the observational data with noise perturbations is of paramount significance but still a major challenge presently. Here, for the Hamiltonian mechanics, we propose the Hamiltonian Neural Koopman Operator (HNKO), integrating the knowledge of mathematical physics in learning the Koopman operator, and making it automatically sustain and even discover the conservation laws. We demonstrate the outperformance of the HNKO and its extension using a number of representative physical systems even with hundreds or thousands of freedoms. Our results suggest that feeding the prior knowledge of the underlying system and the mathematical theory appropriately to the learning framework can reinforce the capability of machine learning in solving physical problems.
- Abstract(参考訳): ノイズ摂動を伴う観測データに基づいて正確な力学の発見と予測が最重要であるが、現在でも大きな課題である。
ここでは,ハミルトニアン力学において,ハミルトニアン・ニューラル・クープマン演算子 (HNKO) を提案する。
数百から数千の自由度においても,HNKOとその拡張性能を代表的物理系を用いて実証する。
この結果から,基礎となるシステムの事前知識と数学的理論を学習フレームワークに適切に供給することで,物理問題の解法における機械学習の能力を高めることが示唆された。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
量子領域において、そのようなアプローチは、非可積分系に対するシュレーディンガー方程式を解く新しいアプローチへの道を開く。
実数および虚数周波数のシステムについて検討し、量子場理論に現れる問題に対処するための新しい数値法の基礎を築いた。
論文 参考訳(メタデータ) (2024-05-22T08:34:52Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Learning dynamical systems: an example from open quantum system dynamics [0.0]
我々は、デファスゲートと結合した小さなスピン鎖のダイナミクスについて研究する。
クープマン演算子学習は, 密度行列の進化だけでなく, システムに付随するすべての物理観測可能量についても, 効率的に学習する手法であることを示す。
論文 参考訳(メタデータ) (2022-11-12T14:36:13Z) - Constants of motion network [0.0]
データからシステムの力学と運動定数を同時に学習できるニューラルネットワークを提案する。
検出された運動定数を利用することで、ダイナミクスの予測がより良くなる。
論文 参考訳(メタデータ) (2022-08-22T15:07:48Z) - Learning Neural Hamiltonian Dynamics: A Methodological Overview [109.40968389896639]
Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
論文 参考訳(メタデータ) (2022-02-28T22:54:39Z) - Robust and Efficient Hamiltonian Learning [2.121963121603413]
軽度の仮定に基づいて制限を回避できる頑健で効率的なハミルトン学習法を提案する。
提案手法は,短時間のダイナミクスと局所演算のみを用いて,パウリベースでスパースなハミルトニアンを効率的に学習することができる。
ランダムな相互作用強度と分子ハミルトニアンを持つ横場イジング・ハミルトニアンのスケーリングと推定精度を数値的に検証する。
論文 参考訳(メタデータ) (2022-01-01T13:48:15Z) - A Free Lunch from the Noise: Provable and Practical Exploration for
Representation Learning [55.048010996144036]
ある雑音仮定の下では、対応するマルコフ遷移作用素の線型スペクトル特性を自由な閉形式で得られることを示す。
本稿では,スペクトルダイナミクス埋め込み(SPEDE)を提案する。これはトレードオフを破り,雑音の構造を利用して表現学習のための楽観的な探索を完遂する。
論文 参考訳(メタデータ) (2021-11-22T19:24:57Z) - Symplectic Learning for Hamiltonian Neural Networks [0.0]
Hamiltonian Neural Networks (HNN)は、統一された"グレーボックス"アプローチに向けた第一歩を踏み出した。
損失関数が異なるハミルトン系のシンプレクティック構造を利用する。
HNNが学習できる正確なハミルトン関数の存在を数学的に保証する。
論文 参考訳(メタデータ) (2021-06-22T13:33:12Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。