論文の概要: Learning Neural Hamiltonian Dynamics: A Methodological Overview
- arxiv url: http://arxiv.org/abs/2203.00128v1
- Date: Mon, 28 Feb 2022 22:54:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 02:21:34.165770
- Title: Learning Neural Hamiltonian Dynamics: A Methodological Overview
- Title(参考訳): 神経ハミルトニアンダイナミクスの学習 : 方法論的概観
- Authors: Zhijie Chen, Mingquan Feng, Junchi Yan, Hongyuan Zha
- Abstract要約: Hamiltonian dynamicsは、ニューラルネットワークに正確な長期予測、解釈可能性、データ効率の学習を与える。
我々は最近提案したハミルトンニューラルネットワークモデルについて、特に方法論に焦点を当てて体系的に調査した。
- 参考スコア(独自算出の注目度): 109.40968389896639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The past few years have witnessed an increased interest in learning
Hamiltonian dynamics in deep learning frameworks. As an inductive bias based on
physical laws, Hamiltonian dynamics endow neural networks with accurate
long-term prediction, interpretability, and data-efficient learning. However,
Hamiltonian dynamics also bring energy conservation or dissipation assumptions
on the input data and additional computational overhead. In this paper, we
systematically survey recently proposed Hamiltonian neural network models, with
a special emphasis on methodologies. In general, we discuss the major
contributions of these models, and compare them in four overlapping directions:
1) generalized Hamiltonian system; 2) symplectic integration, 3) generalized
input form, and 4) extended problem settings. We also provide an outlook of the
fundamental challenges and emerging opportunities in this area.
- Abstract(参考訳): ここ数年、ディープラーニングフレームワークにおけるハミルトン力学の学習への関心が高まっている。
物理法則に基づく帰納バイアスとして、ハミルトン力学は、正確な長期予測、解釈可能性、データ効率の学習を含むニューラルネットワークを許容する。
しかし、ハミルトニアン力学は入力データにエネルギー保存や散逸の仮定をもたらし、さらなる計算オーバーヘッドをもたらす。
本稿では,最近提案したハミルトンニューラルネットワークモデルについて,方法論に特化して体系的に調査する。
一般に、これらのモデルの主な貢献について議論し、4つの重なり合う方向で比較する。
1) 一般化ハミルトン系
2)シンプレクティック統合
3)汎用入力形式,及び
4) 問題設定の拡張。
また、この分野における根本的な課題と新たな機会の展望も提供します。
関連論文リスト
- Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation [55.227976642410766]
グラフ内の情報拡散のダイナミクスは、グラフ表現学習に大きな影響を及ぼす重要なオープン問題である。
そこで我々は(ポート-)Hamiltonian Deep Graph Networksを紹介した。
我々は,非散逸的長距離伝播と非保守的行動の両方を,単一の理論的・実践的な枠組みで調整する。
論文 参考訳(メタデータ) (2024-05-27T13:36:50Z) - Separable Hamiltonian Neural Networks [1.8674308456443722]
ハミルトンニューラルネットワーク (HNN) は、力学系のベクトル場を回帰する最先端のモデルである。
観測,学習,帰納バイアスを用いて,HNN内に加法分離性を組み込む分離可能なHNNを提案する。
論文 参考訳(メタデータ) (2023-09-03T03:54:43Z) - Applications of Machine Learning to Modelling and Analysing Dynamical
Systems [0.0]
本稿では,既存のハミルトンニューラルネットワーク構造を適応型シンプレクティックリカレントニューラルネットワークに組み合わせたアーキテクチャを提案する。
このアーキテクチャは、ハミルトニアン力学を予測する際に、これまで提案されていたニューラルネットワークよりも大幅に優れていた。
本手法は, 単一パラメータポテンシャルに対して有効であり, 長期間にわたって正確な予測を行うことができることを示す。
論文 参考訳(メタデータ) (2023-07-22T19:04:17Z) - Learning Trajectories of Hamiltonian Systems with Neural Networks [81.38804205212425]
本稿では,モデル系の連続時間軌跡を推定し,ハミルトニアンニューラルネットワークを強化することを提案する。
提案手法は, 低サンプリング率, ノイズ, 不規則な観測において, HNNに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-04-11T13:25:45Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning Hamiltonians of constrained mechanical systems [0.0]
ハミルトン系は古典力学においてエレガントでコンパクトな形式主義である。
拘束された機械系のハミルトン関数の正確な近似に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-31T14:03:17Z) - SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred
from Vision [73.26414295633846]
最近提案されたモデルのクラスは、高次元観測から潜在力学を学習しようと試みている。
既存の手法は画像再構成の品質に依存しており、学習した潜在力学の質を常に反映しているわけではない。
我々は、基礎となるハミルトン力学が忠実に捕獲されたかどうかのバイナリ指標を含む、一連の新しい尺度を開発する。
論文 参考訳(メタデータ) (2021-11-10T23:26:58Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Nonseparable Symplectic Neural Networks [23.77058934710737]
我々は、新しいニューラルネットワークアーキテクチャ、非分離型シンプレクティックニューラルネットワーク(NSSNN)を提案する。
NSSNNは、限られた観測データから非分離ハミルトン系のシンプレクティック構造を発見し、埋め込む。
大規模ハミルトニアン系に対する長期的、正確で、堅牢な予測を得るためのアプローチの独特な計算上の利点を示す。
論文 参考訳(メタデータ) (2020-10-23T19:50:13Z) - Sparse Symplectically Integrated Neural Networks [15.191984347149667]
SSINN(Sprselectically Integrated Neural Networks)を紹介する。
SSINNはデータからハミルトン力学系を学ぶための新しいモデルである。
古典的ハミルトン力学問題に対するSSINNの評価を行う。
論文 参考訳(メタデータ) (2020-06-10T03:33:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。