Fairness Evolution in Continual Learning for Medical Imaging
- URL: http://arxiv.org/abs/2406.02480v2
- Date: Mon, 07 Jul 2025 11:41:32 GMT
- Title: Fairness Evolution in Continual Learning for Medical Imaging
- Authors: Marina Ceccon, Davide Dalle Pezze, Alessandro Fabris, Gian Antonio Susto,
- Abstract summary: This study examines how bias evolves across tasks using domain-specific fairness metrics and how different CL strategies impact this evolution.<n>Our results show that Learning without Forgetting and Pseudo-Label achieve optimal classification performance, but Pseudo-Label is less biased.
- Score: 47.52603262576663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning has advanced significantly in medical applications, aiding disease diagnosis in Chest X-ray images. However, expanding model capabilities with new data remains a challenge, which Continual Learning (CL) aims to address. Previous studies have evaluated CL strategies based on classification performance; however, in sensitive domains such as healthcare, it is crucial to assess performance across socially salient groups to detect potential biases. This study examines how bias evolves across tasks using domain-specific fairness metrics and how different CL strategies impact this evolution. Our results show that Learning without Forgetting and Pseudo-Label achieve optimal classification performance, but Pseudo-Label is less biased.
Related papers
- CXR-CML: Improved zero-shot classification of long-tailed multi-label diseases in Chest X-Rays [3.196204482566275]
Class imbalance in the distribution of clinical findings presents a significant challenge for self-supervised deep learning models.<n>We propose a class-weighting mechanism that directly aligns with the distribution of classes within the latent space.<n>Our approach results in a notable average improvement of 7% points in zero-shot AUC scores across 40 classes in the MIMIC-CXR-JPG dataset.
arXiv Detail & Related papers (2025-07-25T16:05:47Z) - Comparison of ConvNeXt and Vision-Language Models for Breast Density Assessment in Screening Mammography [39.58317527488534]
This study compares multimodal and CNN-based methods for automated classification using the BI-RADS system.<n>Zero-shot classification achieved modest performance, while the fine-tuned ConvNeXt model outperformed the BioMedCLIP linear probe.<n>These findings suggest that despite the promise of multimodal learning, CNN-based models with end-to-end fine-tuning provide stronger performance for specialized medical imaging.
arXiv Detail & Related papers (2025-06-16T20:14:37Z) - Fairness Analysis of CLIP-Based Foundation Models for X-Ray Image Classification [15.98427699337596]
We perform a comprehensive fairness analysis of CLIP-like models applied to X-ray image classification.
We assess their performance and fairness across diverse patient demographics and disease categories using zero-shot inference and various fine-tuning techniques.
arXiv Detail & Related papers (2025-01-31T12:23:50Z) - An analysis of data variation and bias in image-based dermatological datasets for machine learning classification [2.039829968340841]
In clinical dermatology, classification models can detect malignant lesions on patients' skin using only RGB images as input.
Most learning-based methods employ data acquired from dermoscopic datasets on training, which are large and validated by a gold standard.
This work aims to evaluate the gap between dermoscopic and clinical samples and understand how the dataset variations impact training.
arXiv Detail & Related papers (2025-01-15T17:18:46Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Continual Learning for Tumor Classification in Histopathology Images [0.0]
Continual learning models that alleviate model forgetting need to be introduced in digital pathology based analysis.
Here, we propose CL scenarios in DP settings, where histopathology image data from different sources/distributions arrive sequentially.
We established an augmented dataset for colorectal cancer H&E classification to simulate shifts of image appearance.
We leveraged a breast tumor H&E dataset along with the colorectal cancer to evaluate CL from different tumor types.
arXiv Detail & Related papers (2022-08-07T01:04:25Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Curriculum learning for improved femur fracture classification:
scheduling data with prior knowledge and uncertainty [36.54112505898611]
We propose a method for the automatic classification of proximal femur fractures into 3 and 7 AO classes based on a Convolutional Neural Network (CNN)
Our novel formulation reunites three curriculum strategies: individually weighting training samples, reordering the training set, and sampling subsets of data.
The curriculum improves proximal femur fracture classification up to the performance of experienced trauma surgeons.
arXiv Detail & Related papers (2020-07-31T14:28:33Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.