論文の概要: Graph Convolutional Branch and Bound
- arxiv url: http://arxiv.org/abs/2406.03099v1
- Date: Wed, 5 Jun 2024 09:42:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:59:55.895860
- Title: Graph Convolutional Branch and Bound
- Title(参考訳): グラフ畳み込み分岐と境界
- Authors: Lorenzo Sciandra, Roberto Esposito, Andrea Cesare Grosso, Laura Sacerdote, Cristina Zucca,
- Abstract要約: 本稿では,最適化パイプラインにおけるディープラーニングモデルの有効性を示す。
この文脈では、ニューラルネットワークを利用して、価値ある情報を素早く取得することができる。
- 参考スコア(独自算出の注目度): 1.8966938152549224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article demonstrates the effectiveness of employing a deep learning model in an optimization pipeline. Specifically, in a generic exact algorithm for a NP problem, multiple heuristic criteria are usually used to guide the search of the optimum within the set of all feasible solutions. In this context, neural networks can be leveraged to rapidly acquire valuable information, enabling the identification of a more expedient path in this vast space. So, after the explanation of the tackled traveling salesman problem, the implemented branch and bound for its classical resolution is described. This algorithm is then compared with its hybrid version termed "graph convolutional branch and bound" that integrates the previous branch and bound with a graph convolutional neural network. The empirical results obtained highlight the efficacy of this approach, leading to conclusive findings and suggesting potential directions for future research.
- Abstract(参考訳): 本稿では,最適化パイプラインにおけるディープラーニングモデルの有効性を示す。
具体的には、NP問題に対する一般的な正確なアルゴリズムにおいて、複数のヒューリスティックな基準は、通常、すべての実現可能な解の集合内の最適解の探索を導くために用いられる。
この文脈では、ニューラルネットワークを利用して、価値ある情報を素早く取得し、この広大な空間においてより適切な経路を識別することができる。
そこで、取り組んだ旅行セールスマン問題の説明の後、実装されたブランチと古典的解決のためのバウンドについて述べる。
このアルゴリズムは、前の分岐を統合してグラフ畳み込みニューラルネットワークとバインドするグラフ畳み込み分岐とバインドと呼ばれるハイブリッドバージョンと比較される。
実験の結果、このアプローチの有効性が強調され、決定的な発見と今後の研究への潜在的方向性が示唆された。
関連論文リスト
- PNN: From proximal algorithms to robust unfolded image denoising
networks and Plug-and-Play methods [7.317910352447519]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - Learning to Branch in Combinatorial Optimization with Graph Pointer
Networks [17.729352126574902]
本稿では,分岐境界における変数選択ポリシーを学習するためのグラフポインターネットワークモデルを提案する。
グラフニューラルネットワークとポインタ機構を組み合わせたモデルでは,解法状態から分岐変数決定への効果的マッピングが可能である。
論文 参考訳(メタデータ) (2023-07-04T01:56:07Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Learning Branching Heuristics from Graph Neural Networks [1.4660170768702356]
まず,確率論的手法を用いて設計した新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、AIで使用される古典的なバックトラッキングアルゴリズムの強化にGNNを適用する新しい方法を導入する。
論文 参考訳(メタデータ) (2022-11-26T00:01:01Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Inability of a graph neural network heuristic to outperform greedy
algorithms in solving combinatorial optimization problems like Max-Cut [0.0]
Nature Machine Intelligence 4, 367 (2022) において、Schuetzらは、様々な古典的なNPハード最適化問題を解決するためにニューラルネットワーク(GNN)を使用するスキームを提供している。
ネットワークがサンプルインスタンス上でどのようにトレーニングされているかを説明し、その結果のGNNは、広く使われているテクニックを適用して、その成功の可能性を判断する。
しかし, より綿密な検査により, このGNNの報告結果は勾配降下率よりもわずかに優れており, グリーディアルゴリズムにより性能が向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-02T20:50:33Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
我々は高密度サブグラフ発見のための新しい学習問題を導入する。
まず,確率の高いほぼ最適解を求めるエッジ時間アルゴリズムを提案する。
そして、理論的保証のあるよりスケーラブルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-24T11:37:33Z) - Neural Bipartite Matching [19.600193617583955]
本稿では,ニューラルネットワークが複雑なアルゴリズムに適用される方法について述べる。
単一のGNNから生成された機能のみに基づいて、ニューラル実行によって実現される。
評価の結果,ネットワークがほぼ100%の時間で最適なマッチングを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-22T17:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。