論文の概要: What is the Best Way for ChatGPT to Translate Poetry?
- arxiv url: http://arxiv.org/abs/2406.03450v1
- Date: Wed, 5 Jun 2024 16:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:22:00.308575
- Title: What is the Best Way for ChatGPT to Translate Poetry?
- Title(参考訳): ChatGPTが詩を翻訳する最良の方法は?
- Authors: Shanshan Wang, Derek F. Wong, Jingming Yao, Lidia S. Chao,
- Abstract要約: 英漢詩翻訳におけるChatGPTの能力について検討し、目的のプロンプトと小規模なサンプルシナリオを用いて最適なパフォーマンスを確かめる。
本稿では,単言語詩の説明を翻訳プロセスの案内情報として活用する,説明支援歌唱機械翻訳(EAPMT)手法を提案する。
EAPMT法は従来のChatGPTや既存のオンラインシステムよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 38.47691441569612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine translation (MT) has historically faced significant challenges when applied to literary works, particularly in the domain of poetry translation. The advent of Large Language Models such as ChatGPT holds potential for innovation in this field. This study examines ChatGPT's capabilities in English-Chinese poetry translation tasks, utilizing targeted prompts and small sample scenarios to ascertain optimal performance. Despite promising outcomes, our analysis reveals persistent issues in the translations generated by ChatGPT that warrant attention. To address these shortcomings, we propose an Explanation-Assisted Poetry Machine Translation (EAPMT) method, which leverages monolingual poetry explanation as a guiding information for the translation process. Furthermore, we refine existing evaluation criteria to better suit the nuances of modern poetry translation. We engaged a panel of professional poets for assessments, complemented evaluations by using GPT-4. The results from both human and machine evaluations demonstrate that our EAPMT method outperforms traditional translation methods of ChatGPT and the existing online systems. This paper validates the efficacy of our method and contributes a novel perspective to machine-assisted literary translation.
- Abstract(参考訳): 機械翻訳(MT)は歴史的に文学作品、特に詩の翻訳分野において重要な課題に直面してきた。
ChatGPTのような大規模言語モデルの出現は、この分野におけるイノベーションの可能性を秘めている。
英漢詩翻訳におけるChatGPTの能力について検討し、目的のプロンプトと小規模なサンプルシナリオを用いて最適なパフォーマンスを確かめる。
有望な結果にもかかわらず、我々の分析はChatGPTが生成した翻訳の持続的な問題を明らかにし、注意を喚起する。
これらの欠点に対処するために,単言語詩の説明を翻訳プロセスの案内情報として活用する,説明支援詩翻訳(EAPMT)手法を提案する。
さらに,現代詩翻訳のニュアンスに合うように,既存の評価基準を改良する。
我々は,GPT-4による評価,補完的な評価のために,プロの詩人のパネルに関わった。
EAPMT法は従来のChatGPTや既存のオンラインシステムよりも優れていることを示す。
本稿では,本手法の有効性を検証し,機械支援文学翻訳に新たな視点を提供する。
関連論文リスト
- Benchmarking LLMs for Translating Classical Chinese Poetry:Evaluating Adequacy, Fluency, and Elegance [43.148203559785095]
古典漢詩を英語に翻訳するための適切なベンチマーク(PoetMT)を導入する。
この課題は、文化的、歴史的に重要な内容の翻訳に適当であるだけでなく、言語的な優雅さや詩的な優雅さへの厳格な固執も必要である。
本稿では,古典詩に関する知識を取り入れた検索型機械翻訳手法であるRATを提案する。
論文 参考訳(メタデータ) (2024-08-19T12:34:31Z) - Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
最新のニューラル・マシン・トランスレーション(NMT)システムでは、アンダー・トランスレーションとオーバー・トランスレーションの2つの課題が残っている。
我々は,NMTにおけるアンダートランスレーションの根本原因を詳細に分析し,デコード目的の観点から解説する。
本研究は,低翻訳の検知器としてEOS(End Of Sentence)予測の信頼性を活用し,低翻訳のリスクが高い候補を罰する信頼性に基づくペナルティを強化することを提案する。
論文 参考訳(メタデータ) (2024-05-29T09:25:49Z) - (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
本稿では,大言語モデル(LLM)をベースとした多エージェントフレームワークを,TransAgentsという企業として実装した。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
論文 参考訳(メタデータ) (2024-05-20T05:55:08Z) - Exploring the effectiveness of ChatGPT-based feedback compared with
teacher feedback and self-feedback: Evidence from Chinese to English
translation [1.25097469793837]
最先端のAIを搭載したChatGPTは、与えられたコマンドに対して素早くレスポンスを生成することができる。
本研究は,中国語訳文の改訂版と,中国語訳文(MTI)の学生による英語訳文を比較した。
論文 参考訳(メタデータ) (2023-09-04T14:54:39Z) - Is ChatGPT Involved in Texts? Measure the Polish Ratio to Detect
ChatGPT-Generated Text [48.36706154871577]
我々はHPPT(ChatGPT-polished academic abstracts)と呼ばれる新しいデータセットを紹介する。
純粋なChatGPT生成テキストの代わりに、人書きとChatGPTポリケートされた抽象文のペアを構成することで、既存のコーパスから分岐する。
また,ChatGPTによる修正の度合いを,オリジナルの人文テキストと比較した革新的な尺度であるPolish Ratio法を提案する。
論文 参考訳(メタデータ) (2023-07-21T06:38:37Z) - How to Design Translation Prompts for ChatGPT: An Empirical Study [18.678893287863033]
ChatGPTは自然言語理解と自然言語生成において驚くべき能力を示した。
私たちは、広範囲の翻訳にいくつかの翻訳プロンプトを採用しています。
私たちの研究は、ChatGPTが翻訳において大きな可能性を秘めているという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-04-05T01:17:59Z) - Towards Making the Most of ChatGPT for Machine Translation [75.576405098545]
ChatGPTは機械翻訳(MT)の優れた機能を示す
いくつかの先行研究により、ハイソース言語の商用システムと同等の結果が得られることが示されている。
論文 参考訳(メタデータ) (2023-03-24T03:35:21Z) - Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine [97.8609714773255]
機械翻訳におけるChatGPTの評価には,翻訳プロンプト,多言語翻訳,翻訳堅牢性などが含まれる。
ChatGPTは商用翻訳製品と競合するが、低リソースや遠方の言語では遅れている。
GPT-4エンジンの打ち上げにより、ChatGPTの翻訳性能は大幅に向上した。
論文 参考訳(メタデータ) (2023-01-20T08:51:36Z) - A Semi-supervised Approach for a Better Translation of Sentiment in
Dialectical Arabic UGT [2.6763498831034034]
NMTシステムのトレーニングにモノリンガルデータと並列データの両方を利用する半教師付きアプローチを導入する。
提案システムは,アラビア語の方言UGTのオンライン翻訳で検出された感情誤りの訂正に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-21T11:55:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。