論文の概要: Position: How Regulation Will Change Software Security Research
- arxiv url: http://arxiv.org/abs/2406.04152v1
- Date: Thu, 6 Jun 2024 15:16:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 14:20:13.571719
- Title: Position: How Regulation Will Change Software Security Research
- Title(参考訳): ポジション:規制がソフトウェアのセキュリティ研究をどのように変えるか
- Authors: Steven Arzt, Linda Schreiber, Dominik Appelt,
- Abstract要約: ソフトウェア工学の研究は、業界が新しい標準に従うのに役立つより良いツールとサポートを提供する必要がある、と私たちは主張する。
我々は法学者と計算機科学者の強い協力を主張する。
- 参考スコア(独自算出の注目度): 3.8165295526908243
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Software security has been an important research topic over the years. The community has proposed processes and tools for secure software development and security analysis. However, a significant number of vulnerabilities remains in real-world software-driven systems and products. To alleviate this problem, legislation is being established to oblige manufacturers, for example, to comply with essential security requirements and to establish appropriate development practices. We argue that software engineering research needs to provide better tools and support that helps industry comply with the new standards while retaining effcient processes. We argue for a stronger cooperation between legal scholars and computer scientists, and for bridging the gap between higher-level regulation and code-level engineering.
- Abstract(参考訳): ソフトウェアセキュリティは、長年にわたり重要な研究トピックである。
コミュニティは、セキュアなソフトウェア開発とセキュリティ分析のためのプロセスとツールを提案している。
しかし、実際のソフトウェア駆動システムや製品には、かなりの数の脆弱性が残っている。
この問題を軽減するため、例えば、メーカーに必須のセキュリティ要件を遵守し、適切な開発慣行を確立するよう義務付ける法律が制定されている。
ソフトウェア工学の研究は、効率的なプロセスを保ちながら、業界が新しい標準に準拠するのに役立つより良いツールとサポートを提供する必要がある、と私たちは主張する。
我々は、法学者とコンピュータ科学者のより強力な協力と、より高いレベルの規制とコードレベルのエンジニアリングのギャップを埋めることを主張します。
関連論文リスト
- Continuous risk assessment in secure DevOps [0.24475591916185502]
私たちは、組織内のリスク関連アクティビティとの関わりから、セキュアなDevOpsが利益を得られるかについて論じています。
我々は、リスクアセスメント(RA)、特に脅威モデリング(TM)を組み合わせることに集中し、ソフトウェアライフサイクルの早期にセキュリティ上の配慮を適用します。
論文 参考訳(メタデータ) (2024-09-05T10:42:27Z) - Security Challenges of Complex Space Applications: An Empirical Study [0.0]
複雑な宇宙アプリケーションの開発と管理におけるセキュリティ上の課題について検討する。
インタビューでは、ソフトウェアアーティファクトの検証、デプロイされたアプリケーションの検証、セキュリティ障害の単一ポイント、信頼されたステークホルダによるデータ改ざんという、4つの重要なセキュリティ課題について論じています。
私は、宇宙や防衛産業におけるソフトウェア完全性検証のより良い方法を可能にする新しいDevSecOps戦略、プラクティス、ツールの今後の研究を提案します。
論文 参考訳(メタデータ) (2024-08-15T10:02:46Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - An Industry Interview Study of Software Signing for Supply Chain Security [5.433194344896805]
多くのサイバーセキュリティフレームワーク、標準、規制は、ソフトウェア署名の使用を推奨している。
最近の調査によると、ソフトウェアシグネチャの採用率と品質は低い。
13の組織にまたがる18の業界実践者に対してインタビューを行った。
論文 参考訳(メタデータ) (2024-06-12T13:30:53Z) - SoK: A Defense-Oriented Evaluation of Software Supply Chain Security [3.165193382160046]
ソフトウェアサプライチェーンのセキュリティ研究と開発の次の段階は、防衛指向のアプローチから大きな恩恵を受けるだろう、と私たちは主張する。
本稿では,ソフトウェアサプライチェーンの基本的な要素とその因果関係を表現するフレームワークであるAStRAモデルを紹介する。
論文 参考訳(メタデータ) (2024-05-23T18:53:48Z) - Software Repositories and Machine Learning Research in Cyber Security [0.0]
堅牢なサイバーセキュリティ防衛の統合は、ソフトウェア開発のあらゆる段階において不可欠になっている。
ソフトウェア要件プロセスにおけるこれらの初期段階の脆弱性の検出にトピックモデリングと機械学習を活用する試みが実施されている。
論文 参考訳(メタデータ) (2023-11-01T17:46:07Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
デジタル双生児は、コスト効率の良いソフトウェア開発とメンテナンス戦略の可能性を秘めている。
私たちは中小企業に現在の開発プロセスについてインタビューした。
最初の結果は、リアルタイムの要求が、これまでは、Software-in-the-Loop開発アプローチを妨げていることを示している。
論文 参考訳(メタデータ) (2023-09-17T08:56:36Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。