Reforming Quantum Microgrid Formation
- URL: http://arxiv.org/abs/2406.05916v1
- Date: Sun, 9 Jun 2024 21:07:34 GMT
- Title: Reforming Quantum Microgrid Formation
- Authors: Chaofan Lin, Peng Zhang, Mikhail A. Bragin, Yacov A. Shamash,
- Abstract summary: This letter introduces a novel compact and lossless quantum microgrid formation (qMGF) approach to achieve efficient operational optimization of the power system and improvement of resilience.
Case studies on real quantum processing units (QPUs) empirically demonstrated that qMGF can achieve the same high accuracy as classic results with a significantly reduced number of qubits.
- Score: 4.145486155106379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter introduces a novel compact and lossless quantum microgrid formation (qMGF) approach to achieve efficient operational optimization of the power system and improvement of resilience. This is achieved through lossless reformulation to ensure that the results are equivalent to those produced by the classical MGF by exploiting graph-theory-empowered quadratic unconstrained binary optimization (QUBO) that avoids the need for redundant encoding of continuous variables. Additionally, the qMGF approach utilizes a compact formulation that requires significantly fewer qubits compared to other quantum methods thereby enabling a high-accuracy and low-complexity deployment of qMGF on near-term quantum computers. Case studies on real quantum processing units (QPUs) empirically demonstrated that qMGF can achieve the same high accuracy as classic results with a significantly reduced number of qubits.
Related papers
- Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.
Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
arXiv Detail & Related papers (2025-04-29T14:10:10Z) - Programming Variational Quantum Circuits with Quantum-Train Agent [3.360429911727189]
The Quantum-Train Quantum Fast Weight Programmer (QT-QFWP) framework is proposed, which facilitates the efficient and scalable programming of variational quantum circuits (VQCs)
This approach offers a significant advantage over conventional hybrid quantum-classical models by optimizing both quantum and classical parameter management.
QT-QFWP outperforms related models in both efficiency and predictive accuracy, providing a pathway toward more practical and cost-effective quantum machine learning applications.
arXiv Detail & Related papers (2024-12-02T06:26:09Z) - NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
variational quantum compilation (VQC) methods employ variational optimization to reduce gate costs while maintaining high accuracy.
We show that our approach exceeds state-of-the-art compilation results in both system size and accuracy in one dimension ($1$D)
For the first time, we extend VQC to systems on two-dimensional (2D) strips with a quasi-1D treatment, demonstrating a significant resource advantage over standard Trotterization methods.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
Variational quantum algorithms are considered one of the most promising methods for obtaining near-term quantum advantages.
The roadblock to developing quantum algorithms with the measurement-based quantum computation scheme is resource cost.
We propose an efficient measurement-based quantum algorithm for quantum many-body system simulation tasks, called measurement-based Hamiltonian variational ansatz (MBHVA)
arXiv Detail & Related papers (2023-07-19T08:07:53Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.