Predicting the risk of early-stage breast cancer recurrence using H\&E-stained tissue images
- URL: http://arxiv.org/abs/2406.06650v1
- Date: Mon, 10 Jun 2024 08:51:59 GMT
- Title: Predicting the risk of early-stage breast cancer recurrence using H\&E-stained tissue images
- Authors: Geongyu Lee, Joonho Lee, Tae-Yeong Kwak, Sun Woo Kim, Youngmee Kwon, Chungyeul Kim, Hyeyoon Chang,
- Abstract summary: We investigated whether deep learning algorithms can predict patients' risk of recurrence by analyzing the pathology images of their cancer histology.
We obtained sensitivity of 0.857, 0.746, and 0.529 for predicting low, intermediate, and high risk, and specificity of 0.816, 0.803, and 0.972.
When we checked the model learned through these studies through the class activation map, we found that it actually considered tubule formation and mitotic rate when predicting different risk groups.
- Score: 5.507561997194002
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of the likelihood of recurrence is important in the selection of postoperative treatment for patients with early-stage breast cancer. In this study, we investigated whether deep learning algorithms can predict patients' risk of recurrence by analyzing the pathology images of their cancer histology. A total of 125 hematoxylin and eosin stained breast cancer whole slide images labeled with the risk prediction via genomics assays were used, and we obtained sensitivity of 0.857, 0.746, and 0.529 for predicting low, intermediate, and high risk, and specificity of 0.816, 0.803, and 0.972. When compared to the expert pathologist's regional histology grade information, a Pearson's correlation coefficient of 0.61 was obtained. When we checked the model learned through these studies through the class activation map, we found that it actually considered tubule formation and mitotic rate when predicting different risk groups.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Prediction of Rapid Early Progression and Survival Risk with
Pre-Radiation MRI in WHO Grade 4 Glioma Patients [0.5365740459403827]
We investigate the potential of ra-diomics, sophisticated multi-resolution fractal texture features, and different molecular features as a diagnostic and prognostic tool for prediction of REP from non-REP cases.
The prediction of survival for the patients cohort produces precision of 0.881 with standard deviation of 0.056.
The experimental result further shows that mul-ti-resolution fractal texture features perform better than conventional radiomics features for REP and survival outcomes.
arXiv Detail & Related papers (2023-06-28T20:03:18Z) - hist2RNA: An efficient deep learning architecture to predict gene
expression from breast cancer histopathology images [11.822321981275232]
Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively.
We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA-sequencing techniques to predict the expression of 138 genes.
arXiv Detail & Related papers (2023-04-10T10:54:32Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for
Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and
Clinical Data [0.0]
This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted in Italy.
The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively.
The nomogram-based scoring technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %.
arXiv Detail & Related papers (2022-06-15T15:23:43Z) - L1-regularized neural ranking for risk stratification and its
application to prediction of time to distant metastasis in luminal node
negative chemotherapy na\"ive breast cancer patients [9.269883992088147]
We propose a ranking based censoring-aware machine learning model for answering such questions.
We analyze the association of time to distant metastasis with various clinical parameters for early stage, luminal (ER+ or HER2-) breast cancer patients.
Our analysis shows that the proposed risk stratification formula can discriminate between cases with high and low risk of distant metastasis.
arXiv Detail & Related papers (2021-08-23T19:04:18Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.