L1-regularized neural ranking for risk stratification and its
application to prediction of time to distant metastasis in luminal node
negative chemotherapy na\"ive breast cancer patients
- URL: http://arxiv.org/abs/2108.10365v1
- Date: Mon, 23 Aug 2021 19:04:18 GMT
- Title: L1-regularized neural ranking for risk stratification and its
application to prediction of time to distant metastasis in luminal node
negative chemotherapy na\"ive breast cancer patients
- Authors: Fayyaz Minhas, Michael S. Toss, Noor ul Wahab, Emad Rakha and Nasir M.
Rajpoot
- Abstract summary: We propose a ranking based censoring-aware machine learning model for answering such questions.
We analyze the association of time to distant metastasis with various clinical parameters for early stage, luminal (ER+ or HER2-) breast cancer patients.
Our analysis shows that the proposed risk stratification formula can discriminate between cases with high and low risk of distant metastasis.
- Score: 9.269883992088147
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Can we predict if an early stage cancer patient is at high risk of developing
distant metastasis and what clinicopathological factors are associated with
such a risk? In this paper, we propose a ranking based censoring-aware machine
learning model for answering such questions. The proposed model is able to
generate an interpretable formula for risk stratifi-cation using a minimal
number of clinicopathological covariates through L1-regulrization. Using this
approach, we analyze the association of time to distant metastasis (TTDM) with
various clinical parameters for early stage, luminal (ER+ or HER2-) breast
cancer patients who received endocrine therapy but no chemotherapy (n = 728).
The TTDM risk stratification formula obtained using the proposed approach is
primarily based on mitotic score, histolog-ical tumor type and lymphovascular
invasion. These findings corroborate with the known role of these covariates in
increased risk for distant metastasis. Our analysis shows that the proposed
risk stratification formula can discriminate between cases with high and low
risk of distant metastasis (p-value < 0.005) and can also rank cases based on
their time to distant metastasis with a concordance-index of 0.73.
Related papers
- Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers [2.482109221766753]
Cancer screening involves an initial risk stratification step to determine the screening method and frequency.
For most screening programs, age and clinical risk factors such as family history are part of the initial risk stratification algorithm.
We demonstrate that the combination of simple, widely available blood tests, such as complete blood count and complete metabolic panel, could potentially be used to identify patients at risk for colorectal, liver, and lung cancers.
arXiv Detail & Related papers (2024-10-25T15:50:27Z) - Predicting the risk of early-stage breast cancer recurrence using H\&E-stained tissue images [5.507561997194002]
We investigated whether deep learning algorithms can predict patients' risk of recurrence by analyzing the pathology images of their cancer histology.
We obtained sensitivity of 0.857, 0.746, and 0.529 for predicting low, intermediate, and high risk, and specificity of 0.816, 0.803, and 0.972.
When we checked the model learned through these studies through the class activation map, we found that it actually considered tubule formation and mitotic rate when predicting different risk groups.
arXiv Detail & Related papers (2024-06-10T08:51:59Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Prediction of Rapid Early Progression and Survival Risk with
Pre-Radiation MRI in WHO Grade 4 Glioma Patients [0.5365740459403827]
We investigate the potential of ra-diomics, sophisticated multi-resolution fractal texture features, and different molecular features as a diagnostic and prognostic tool for prediction of REP from non-REP cases.
The prediction of survival for the patients cohort produces precision of 0.881 with standard deviation of 0.056.
The experimental result further shows that mul-ti-resolution fractal texture features perform better than conventional radiomics features for REP and survival outcomes.
arXiv Detail & Related papers (2023-06-28T20:03:18Z) - Risk Classification of Brain Metastases via Radiomics, Delta-Radiomics
and Machine Learning [7.165205048529115]
We hypothesized that using radiomics and machine learning (ML), metastases at high risk for subsequent progression could be identified during follow-up prior to the onset of significant tumor growth.
The classification is realized via the maximum-relevance minimal-redundancy (MRMR) technique and support vector machines (SVM)
The results indicate that risk stratification of BM based on radiomics and machine learning during post-SRT follow-up is possible with good accuracy and should be further pursued to personalize and improve post-SRT follow-up.
arXiv Detail & Related papers (2023-02-17T10:55:18Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.