Complexity-Aware Deep Symbolic Regression with Robust Risk-Seeking Policy Gradients
- URL: http://arxiv.org/abs/2406.06751v1
- Date: Mon, 10 Jun 2024 19:29:10 GMT
- Title: Complexity-Aware Deep Symbolic Regression with Robust Risk-Seeking Policy Gradients
- Authors: Zachary Bastiani, Robert M. Kirby, Jacob Hochhalter, Shandian Zhe,
- Abstract summary: This paper proposes a novel deep symbolic regression approach to enhance the robustness and interpretability of data-driven mathematical expression discovery.
Despite the success of the state-of-the-art method, DSR, it is built on recurrent neural networks, purely guided by data fitness.
We use transformers in conjunction with breadth-first-search to improve the learning performance.
- Score: 20.941908494137806
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a novel deep symbolic regression approach to enhance the robustness and interpretability of data-driven mathematical expression discovery. Despite the success of the state-of-the-art method, DSR, it is built on recurrent neural networks, purely guided by data fitness, and potentially meet tail barriers, which can zero out the policy gradient and cause inefficient model updates. To overcome these limitations, we use transformers in conjunction with breadth-first-search to improve the learning performance. We use Bayesian information criterion (BIC) as the reward function to explicitly account for the expression complexity and optimize the trade-off between interpretability and data fitness. We propose a modified risk-seeking policy that not only ensures the unbiasness of the gradient, but also removes the tail barriers, thus ensuring effective updates from top performers. Through a series of benchmarks and systematic experiments, we demonstrate the advantages of our approach.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Regularization for Adversarial Robust Learning [18.46110328123008]
We develop a novel approach to adversarial training that integrates $phi$-divergence regularization into the distributionally robust risk function.
This regularization brings a notable improvement in computation compared with the original formulation.
We validate our proposed method in supervised learning, reinforcement learning, and contextual learning and showcase its state-of-the-art performance against various adversarial attacks.
arXiv Detail & Related papers (2024-08-19T03:15:41Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - A Bayesian Robust Regression Method for Corrupted Data Reconstruction [5.298637115178182]
We develop an effective robust regression method that can resist adaptive adversarial attacks.
First, we propose the novel TRIP (hard Thresholding approach to Robust regression with sImple Prior) algorithm.
We then use the idea of Bayesian reweighting to construct the more robust BRHT (robust Bayesian Reweighting regression via Hard Thresholding) algorithm.
arXiv Detail & Related papers (2022-12-24T17:25:53Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
Learning [70.01650994156797]
Off- evaluation of sequential decision policies from observational data is necessary in batch reinforcement learning such as education healthcare.
We develop an approach that estimates the bounds of a given policy.
We prove convergence to the sharp bounds as we collect more confounded data.
arXiv Detail & Related papers (2020-02-11T16:18:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.