論文の概要: Eyeballing Combinatorial Problems: A Case Study of Using Multimodal Large Language Models to Solve Traveling Salesman Problems
- arxiv url: http://arxiv.org/abs/2406.06865v1
- Date: Tue, 11 Jun 2024 00:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 19:46:28.851291
- Title: Eyeballing Combinatorial Problems: A Case Study of Using Multimodal Large Language Models to Solve Traveling Salesman Problems
- Title(参考訳): アイボーリングコンビニアル問題:多モーダル大言語モデルを用いたトラベリングセールスマン問題の解法
- Authors: Mohammed Elhenawy, Ahmed Abdelhay, Taqwa I. Alhadidi, Huthaifa I Ashqar, Shadi Jaradat, Ahmed Jaber, Sebastien Glaser, Andry Rakotonirainy,
- Abstract要約: MLLM(Multimodal Large Language Models)は、多言語多言語モデル(MLLM)である。
本稿では,旅行セールスマン問題に対する「眼球」解に対するMLLMの視覚機能の利用について検討する。
- 参考スコア(独自算出の注目度): 6.157421830538752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated proficiency in processing di-verse modalities, including text, images, and audio. These models leverage extensive pre-existing knowledge, enabling them to address complex problems with minimal to no specific training examples, as evidenced in few-shot and zero-shot in-context learning scenarios. This paper investigates the use of MLLMs' visual capabilities to 'eyeball' solutions for the Traveling Salesman Problem (TSP) by analyzing images of point distributions on a two-dimensional plane. Our experiments aimed to validate the hypothesis that MLLMs can effectively 'eyeball' viable TSP routes. The results from zero-shot, few-shot, self-ensemble, and self-refine zero-shot evaluations show promising outcomes. We anticipate that these findings will inspire further exploration into MLLMs' visual reasoning abilities to tackle other combinatorial problems.
- Abstract(参考訳): MLLM (Multimodal Large Language Models) は、テキスト、画像、オーディオなど、双方向のモダリティを処理する能力を示した。
これらのモデルは、既存の知識を幅広く活用することで、少数のショットとゼロショットのインコンテキスト学習シナリオで証明されているように、特定のトレーニング例を最小限あるいは全く含まない複雑な問題に対処することができる。
本稿では,2次元平面上の点分布の画像解析により,旅行セールスマン問題(TSP)の「眼球」解に対するMLLMの視覚機能の利用について検討する。
本実験は,MLLMが有効なTSP経路を効果的に「眼球」できるという仮説を検証することを目的とした。
ゼロショット、少数ショット、自己アンサンブル、自己修正ゼロショット評価の結果は、有望な結果を示している。
これらの知見がMLLMの視覚的推論能力の他の組み合わせ問題に対処するためのさらなる探究を促すことを期待する。
関連論文リスト
- Visual Reasoning and Multi-Agent Approach in Multimodal Large Language Models (MLLMs): Solving TSP and mTSP Combinatorial Challenges [5.934258790280767]
MLLM(Multimodal Large Language Models)は、テキスト、画像、音声にまたがる包括的な知識を活用して、複雑な問題に対処する。
本研究では、旅行セールスマン問題(TSP)と旅行セールスマン問題(mTSP)を視覚的に解決するMLLMの能力について検討する。
本稿では,MLLMフレームワークに複数の特殊エージェントを取り入れた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-26T07:12:06Z) - MathChat: Benchmarking Mathematical Reasoning and Instruction Following in Multi-Turn Interactions [58.57255822646756]
本稿では,大規模言語モデル (LLM) を評価するためのベンチマークであるMathChatを紹介する。
我々は,MathChatベンチマーク上での様々なSOTA LLMの性能評価を行い,これらのモデルが単ターン質問応答において優れているが,より複雑なシナリオでは性能が著しく劣っていることを観察した。
我々は,LLMファインタニングのための合成対話に基づく数学データセットであるMathChat syncを開発した。
論文 参考訳(メタデータ) (2024-05-29T18:45:55Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective [9.633811630889237]
視覚質問応答問題におけるバイアスを解釈するための因果的枠組みを提案する。
因果グラフに触発され、12,000のVQAインスタンスからなる新しいMOREデータセットを導入する。
本稿では,MLLMの推論能力を高めるための2つの手法を提案する。
論文 参考訳(メタデータ) (2024-03-27T08:38:49Z) - The Curious Case of Nonverbal Abstract Reasoning with Multi-Modal Large
Language Models [20.177263185773153]
MLLM(Multi-modal large language model)は、言語情報と視覚情報を統合したものである。
MLLMの革新的展望にもかかわらず、推論能力に対する我々の理解は限られている。
論文 参考訳(メタデータ) (2024-01-22T16:57:05Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
質問駆動型視覚探索(QVix)は、大規模視覚言語モデル(LVLM)の探索能力を高める新しい促進戦略である。
QVixは、視覚的なシーンのより広い探索を可能にし、視覚的な質問応答や視覚的エンターテイメントといったタスクにおけるLVLMの推論精度と深さを改善している。
我々は,ScienceQAやきめ細かな視覚分類など,難易度の高いゼロショット視覚言語ベンチマークの評価を行い,QVixが既存の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-12-04T03:18:51Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
我々は,財務報告に対するマルチホップ数値推論を必要とする複雑な問題に答えるために,大規模言語モデル(LLM)に基づくアプローチを導入する。
LLMを誘導する新しいゼロショットプロンプトを使用して、必要な推論をPythonプログラムやドメイン固有言語にエンコードします。
論文 参考訳(メタデータ) (2023-11-19T16:23:34Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
モデル重み、チューニングタスク、視覚埋め込みを併用した多目的多モード大言語モデル(MLLM)を提案する。
提案したジョイントミキシングに基づいて,高解像度画像のきめ細かい外観をより正確に捉えるための効率的な手法を提案する。
今後のMLLM研究におけるジョイントミキシングの探求に光を当てることを願っている。
論文 参考訳(メタデータ) (2023-11-13T18:59:47Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。