論文の概要: Invariant multiscale neural networks for data-scarce scientific applications
- arxiv url: http://arxiv.org/abs/2406.08318v1
- Date: Wed, 12 Jun 2024 15:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:16:39.871945
- Title: Invariant multiscale neural networks for data-scarce scientific applications
- Title(参考訳): データスカース科学応用のための不変マルチスケールニューラルネットワーク
- Authors: I. Schurov, D. Alforov, M. Katsnelson, A. Bagrov, A. Itin,
- Abstract要約: 対称性を意識した不変アーキテクチャと拡張畳み込みのスタックを組み合わせることは、非常に効果的で容易にレシートを実装することができる。
本稿では,フォトニック結晶のバンドギャップの予測と磁気基底状態のネットワーク近似という,異なる領域の物理問題に応用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Success of machine learning (ML) in the modern world is largely determined by abundance of data. However at many industrial and scientific problems, amount of data is limited. Application of ML methods to data-scarce scientific problems can be made more effective via several routes, one of them is equivariant neural networks possessing knowledge of symmetries. Here we suggest that combination of symmetry-aware invariant architectures and stacks of dilated convolutions is a very effective and easy to implement receipt allowing sizable improvements in accuracy over standard approaches. We apply it to representative physical problems from different realms: prediction of bandgaps of photonic crystals, and network approximations of magnetic ground states. The suggested invariant multiscale architectures increase expressibility of networks, which allow them to perform better in all considered cases.
- Abstract(参考訳): 現代の世界での機械学習(ML)の成功は、データの豊富さによって決定される。
しかし、多くの産業や科学的問題において、データの量は限られている。
データスカース科学問題へのML法の応用は、いくつかの経路を通してより効果的にできる。
ここでは、対称性を意識した不変アーキテクチャと拡張畳み込みのスタックの組み合わせは、標準アプローチよりも精度が大幅に向上するレセプションを実装するのに非常に効果的であり、容易に実装可能であることを示唆する。
本稿では,フォトニック結晶のバンドギャップの予測と磁気基底状態のネットワーク近似という,異なる領域の物理問題に応用する。
提案された不変なマルチスケールアーキテクチャは、ネットワークの表現可能性を高め、考慮されたすべてのケースにおいてより優れた性能を発揮する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Improved Generalization of Weight Space Networks via Augmentations [56.571475005291035]
深度重み空間(DWS)における学習は新たな研究方向であり、2次元および3次元神経場(INRs, NeRFs)への応用
我々は、この過度な適合の理由を実証的に分析し、主要な理由は、DWSデータセットの多様性の欠如であることがわかった。
そこで本研究では,重み空間におけるデータ拡張戦略について検討し,重み空間に適応したMixUp法を提案する。
論文 参考訳(メタデータ) (2024-02-06T15:34:44Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Differentiable Multi-Fidelity Fusion: Efficient Learning of Physics
Simulations with Neural Architecture Search and Transfer Learning [1.0024450637989093]
ニューラル・アーキテクチャ・サーチ(NAS)を利用して、異なる問題に対する適切なモデル・アーキテクチャを自動的に探索する微分可能なmf(DMF)モデルを提案する。
DMFは、少数の高忠実度トレーニングサンプルで物理シミュレーションを効率よく学習することができ、最先端の手法よりも優れたマージンを持つ。
論文 参考訳(メタデータ) (2023-06-12T07:18:13Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - MISNN: Multiple Imputation via Semi-parametric Neural Networks [9.594714330925703]
バイオメディカル・ソーシャル・エコノメトリー研究において、多重計算(Multiple Imputation, MI)は、欠落した価値問題に広く応用されている。
提案するMISNNは,MIの特徴選択を取り入れた,新規で効率的なアルゴリズムである。
論文 参考訳(メタデータ) (2023-05-02T21:45:36Z) - Precision Machine Learning [5.15188009671301]
様々な関数近似法を比較し,パラメータやデータの増加とともにスケールする方法について検討する。
ニューラルネットワークは、しばしば高次元の例において古典的近似法より優れていることが判明した。
我々は,ニューラルネットワークを極端に低損失に訓練する訓練手法を開発した。
論文 参考訳(メタデータ) (2022-10-24T17:58:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Information Theory Measures via Multidimensional Gaussianization [7.788961560607993]
情報理論は、データやシステムの不確実性、依存、関連性を測定するための優れたフレームワークである。
現実世界の応用にはいくつかの望ましい性質がある。
しかし,多次元データから情報を取得することは,次元性の呪いによる難題である。
論文 参考訳(メタデータ) (2020-10-08T07:22:16Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。