論文の概要: Adaptive Physics-informed Neural Networks: A Survey
- arxiv url: http://arxiv.org/abs/2503.18181v1
- Date: Sun, 23 Mar 2025 19:33:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:16.882219
- Title: Adaptive Physics-informed Neural Networks: A Survey
- Title(参考訳): 適応型物理インフォームドニューラルネットワーク:サーベイ
- Authors: Edgar Torres, Jonathan Schiefer, Mathias Niepert,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は偏微分方程式を解くための有望なアプローチとして登場した。
本調査は,移動学習とメタラーニングによる限界に対処する既存の研究をレビューする。
- 参考スコア(独自算出の注目度): 15.350973327319418
- License:
- Abstract: Physics-informed neural networks (PINNs) have emerged as a promising approach to solving partial differential equations (PDEs) using neural networks, particularly in data-scarce scenarios, due to their unsupervised training capability. However, limitations related to convergence and the need for re-optimization with each change in PDE parameters hinder their widespread adoption across scientific and engineering applications. This survey reviews existing research that addresses these limitations through transfer learning and meta-learning. The covered methods improve the training efficiency, allowing faster adaptation to new PDEs with fewer data and computational resources. While traditional numerical methods solve systems of differential equations directly, neural networks learn solutions implicitly by adjusting their parameters. One notable advantage of neural networks is their ability to abstract away from specific problem domains, allowing them to retain, discard, or adapt learned representations to efficiently address similar problems. By exploring the application of these techniques to PINNs, this survey identifies promising directions for future research to facilitate the broader adoption of PINNs in a wide range of scientific and engineering applications.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワークを用いて偏微分方程式(PDE)を解くための有望なアプローチとして登場した。
しかしながら、収束とPDEパラメータの変更による再最適化の必要性に関連する制限は、科学や工学の応用において広く採用されるのを妨げている。
本調査は,移動学習とメタ学習を通じて,これらの制限に対処する既存の研究をレビューする。
カバーされた方法はトレーニング効率を向上し、少ないデータと計算資源で新しいPDEへの適応を高速化する。
従来の数値法は微分方程式のシステムを直接解くが、ニューラルネットワークはパラメータを調整することによって暗黙的に解を学習する。
ニューラルネットワークの顕著な利点の1つは、特定の問題領域から抽象化し、学習した表現を保持、破棄、あるいは適応させることで、同様の問題に効率的に対処することができることである。
これらの手法のPINNへの適用を探求することにより,幅広い科学的・工学的応用において,PINNの広範な採用を促進するための今後の研究の道筋を明らかにする。
関連論文リスト
- VS-PINN: A fast and efficient training of physics-informed neural networks using variable-scaling methods for solving PDEs with stiff behavior [0.0]
本稿では,変数スケーリング手法を用いたPINNのトレーニング手法を提案する。
提案手法の有効性を実証し,PINNのトレーニング効率と性能を大幅に向上させることができることを確認した。
論文 参考訳(メタデータ) (2024-06-10T14:11:15Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
論文 参考訳(メタデータ) (2023-10-14T08:13:43Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Ensemble learning for Physics Informed Neural Networks: a Gradient Boosting approach [10.250994619846416]
段階的強化(GB)と呼ばれる新しい訓練パラダイムを提案する。
与えられたPDEの解を1つのニューラルネットワークで直接学習する代わりに、我々のアルゴリズムは、より優れた結果を得るために、一連のニューラルネットワークを用いています。
この研究は、PINNでアンサンブル学習技術を採用するための扉も開ける。
論文 参考訳(メタデータ) (2023-02-25T19:11:44Z) - Unsupervised Legendre-Galerkin Neural Network for Stiff Partial
Differential Equations [9.659504024299896]
本稿では,Regendre-Galerkinニューラルネットワークに基づく教師なし機械学習アルゴリズムを提案する。
提案したニューラルネットワークは、境界層挙動を有する特異摂動PDEと同様に、一般的な1Dおよび2DPDEに適用される。
論文 参考訳(メタデータ) (2022-07-21T00:47:47Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。