論文の概要: HDNet: Physics-Inspired Neural Network for Flow Estimation based on Helmholtz Decomposition
- arxiv url: http://arxiv.org/abs/2406.08570v1
- Date: Wed, 12 Jun 2024 18:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:27:16.685147
- Title: HDNet: Physics-Inspired Neural Network for Flow Estimation based on Helmholtz Decomposition
- Title(参考訳): HDNet:Helmholtz分解に基づく流れ推定のための物理インスパイアされたニューラルネットワーク
- Authors: Miao Qi, Ramzi Idoughi, Wolfgang Heidrich,
- Abstract要約: HDNetは任意の流れ場のヘルムホルツ分解を実行する。
入力フローを分散のみのコンポーネントとカールのみのコンポーネントに分解する。
PINNとしてHDNetは完全に微分可能であり、任意のフロー推定問題に容易に統合できる。
- 参考スコア(独自算出の注目度): 17.834139646217274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flow estimation problems are ubiquitous in scientific imaging. Often, the underlying flows are subject to physical constraints that can be exploited in the flow estimation; for example, incompressible (divergence-free) flows are expected for many fluid experiments, while irrotational (curl-free) flows arise in the analysis of optical distortions and wavefront sensing. In this work, we propose a Physics- Inspired Neural Network (PINN) named HDNet, which performs a Helmholtz decomposition of an arbitrary flow field, i.e., it decomposes the input flow into a divergence-only and a curl-only component. HDNet can be trained exclusively on synthetic data generated by reverse Helmholtz decomposition, which we call Helmholtz synthesis. As a PINN, HDNet is fully differentiable and can easily be integrated into arbitrary flow estimation problems.
- Abstract(参考訳): フロー推定問題は、科学的イメージングにおいてユビキタスである。
例えば、多くの流体実験では非圧縮性(分散のない)フローが期待され、一方、不整流性(カールのない)フローは光歪みや波面センシングの分析で生じる。
本研究では,任意の流れ場のヘルムホルツ分解を行う物理インスピレーションニューラルネットワーク(PINN)を提案する。
HDNetは、ヘルムホルツ合成と呼ばれる逆ヘルムホルツ分解によって生成される合成データにのみ訓練することができる。
PINNとしてHDNetは完全に微分可能であり、任意のフロー推定問題に容易に統合できる。
関連論文リスト
- Neural Networks-based Random Vortex Methods for Modelling Incompressible Flows [0.0]
本稿では,(2D)非圧縮性ナビエ-ストークス方程式に対する解を近似するためのニューラルネットワークに基づく新しい手法を提案する。
このアルゴリズムは、ランダム渦力学の計算効率の良い定式化を利用する損失関数に基づいて、渦を近似する物理インフォームドニューラルネットワークを用いている。
論文 参考訳(メタデータ) (2024-05-22T14:36:23Z) - HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction [66.38369833561039]
HelmFluidは流体の正確かつ解釈可能な予測器である。
ヘルムホルツの定理に触発され、ヘルムホルツの力学を学ぶためにヘルム力学ブロックを設計する。
HelmDynamicsブロックをマルチスケールのマルチヘッド積分アーキテクチャに埋め込むことで、HelmFluidは学習したHelmholtzダイナミクスを複数の空間スケールで時間次元に沿って統合することができる。
論文 参考訳(メタデータ) (2023-10-16T16:38:32Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Predictive Limitations of Physics-Informed Neural Networks in Vortex
Shedding [0.0]
2Dシリンダーのまわりの流れを見て、データのないPINNは渦の沈みを予測できないことに気付きました。
データ駆動型PINNは、トレーニングデータが利用可能である間のみ渦シーディングを表示するが、データフローが停止したときに定常状態のソリューションに戻す。
複素平面上のクープマン固有値の分布は、PINNが数値的に分散し、拡散することを示唆している。
論文 参考訳(メタデータ) (2023-05-31T22:59:52Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - FlowX: Towards Explainable Graph Neural Networks via Message Flows [59.025023020402365]
グラフニューラルネットワーク(GNN)の動作メカニズム解明へのステップとして,その説明可能性について検討する。
本稿では,重要なメッセージフローを識別してGNNを説明するために,FlowXと呼ばれる新しい手法を提案する。
そこで我々は,多様な説明対象に向けて,フロースコアを学習するための情報制御学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-26T22:48:15Z) - Finite volume method network for acceleration of unsteady computational
fluid dynamics: non-reacting and reacting flows [0.0]
CFDシミュレーションを高速化するために,ユニークなネットワークアーキテクチャと物理インフォームド損失関数を備えたニューラルネットワークモデルを開発した。
反応フローデータセットでは、このネットワークモデルの計算速度はCFDソルバの約10倍の速さで測定された。
論文 参考訳(メタデータ) (2021-05-07T15:33:49Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
流体力学のための物理インフォームドニューラルネットワーク(PINN)の混合可変方式を提案する。
パラメトリック研究では、混合変数スキームがPINNのトレーニング容易性と解の精度を向上させることが示されている。
論文 参考訳(メタデータ) (2020-02-24T21:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。