論文の概要: A Novel Quantum LSTM Network
- arxiv url: http://arxiv.org/abs/2406.08982v1
- Date: Thu, 13 Jun 2024 10:26:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:34:37.166767
- Title: A Novel Quantum LSTM Network
- Title(参考訳): 新しい量子LSTMネットワーク
- Authors: Yifan Zhou, Chong Cheng Xu, Mingi Song, Yew Kee Wong, Kangsong Du,
- Abstract要約: 本稿では,量子コンピューティングの原理を従来のLSTMネットワークと統合した量子LSTM(Quantum LSTM)モデルを提案する。
我々のqLSTMモデルは従来のLSTMの限界に対処することを目的としており、より効率的で効率的なシーケンシャルデータ処理のための堅牢なフレームワークを提供する。
- 参考スコア(独自算出の注目度): 2.938337278931738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid evolution of artificial intelligence has led to the widespread adoption of Long Short-Term Memory (LSTM) networks, known for their effectiveness in processing sequential data. However, LSTMs are constrained by inherent limitations such as the vanishing gradient problem and substantial computational demands. The advent of quantum computing presents a revolutionary approach to overcoming these obstacles. This paper introduces the Quantum LSTM (qLSTM) model, which integrates quantum computing principles with traditional LSTM networks to significantly enhance computational efficiency and model performance in sequence learning tasks. Quantum computing leverages qubits, which can exist in multiple states simultaneously through superposition and entangle these states to represent complex correlations without direct physical interaction, offering a profound advancement over classical binary computing. Our qLSTM model aims to address the limitations of traditional LSTMs, providing a robust framework for more efficient and effective sequential data processing.
- Abstract(参考訳): 人工知能の急速な進化は、シーケンシャルなデータ処理の有効性で知られるLong Short-Term Memory(LSTM)ネットワークの普及につながった。
しかし、LSTMは、消失する勾配問題やかなりの計算要求のような固有の制限によって制約される。
量子コンピューティングの出現は、これらの障害を克服するための革命的なアプローチを示している。
本稿では,従来のLSTMネットワークと量子コンピューティングの原理を統合した量子LSTM(Quantum LSTM)モデルを提案する。
量子コンピューティングは、重畳と絡み合うことで複数の状態に同時に存在する量子ビットを利用して直接物理的相互作用を伴わずに複雑な相関を表現し、古典的なバイナリコンピューティングよりも深い進歩をもたらす。
我々のqLSTMモデルは従来のLSTMの限界に対処することを目的としており、より効率的で効率的なシーケンシャルデータ処理のための堅牢なフレームワークを提供する。
関連論文リスト
- Resource-Efficient Hybrid Quantum-Classical Simulation Algorithm [0.0]
デジタル量子コンピュータは、量子時間進化の実行において指数的なスピードアップを約束する。
中間時間ステップで所望の量子特性を抽出するタスクは、依然として計算ボトルネックである。
我々は,従来のコンピュータがFTQCデバイスや量子時間プロパゲータを利用でき,このボトルネックを克服できるハイブリッドシミュレータを提案する。
論文 参考訳(メタデータ) (2024-05-17T04:17:27Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Reservoir Computing via Quantum Recurrent Neural Networks [0.5999777817331317]
既存のVQCまたはQNNベースの手法は、量子回路パラメータの勾配に基づく最適化を行うために、かなりの計算資源を必要とする。
本研究では、量子リカレントニューラルネットワーク(QRNN-RC)に貯水池計算(RC)フレームワークを適用し、逐次モデリングにアプローチする。
数値シミュレーションにより、QRNN-RCは、複数の関数近似および時系列タスクに対して、完全に訓練されたQRNNモデルに匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2022-11-04T17:30:46Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term
Memory Recurrent Neural Network [0.0]
ブートストラップ法はLSTM-NNの構成と予測に適用される。
ブートストラップに基づくLSTM-NNアプローチは、オープンシステムの長期量子力学を伝播する実用的で強力なツールである。
論文 参考訳(メタデータ) (2021-08-03T05:58:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum Long Short-Term Memory [3.675884635364471]
LSTM(Long Short-term memory)は、シーケンスおよび時間依存性データモデリングのためのリカレントニューラルネットワーク(RNN)である。
本稿では,QLSTMを疑似化したLSTMのハイブリッド量子古典モデルを提案する。
我々の研究は、ノイズの多い中間スケール量子(NISQ)デバイス上でのシーケンスモデリングのための機械学習アルゴリズムの実装への道を開いた。
論文 参考訳(メタデータ) (2020-09-03T16:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。