論文の概要: Implementation Guidelines and Innovations in Quantum LSTM Networks
- arxiv url: http://arxiv.org/abs/2406.08982v2
- Date: Sun, 25 Aug 2024 17:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 23:07:37.737777
- Title: Implementation Guidelines and Innovations in Quantum LSTM Networks
- Title(参考訳): 量子LSTMネットワークにおける実装ガイドラインとイノベーション
- Authors: Yifan Zhou, Chong Cheng Xu, Mingi Song, Yew Kee Wong, Kangsong Du,
- Abstract要約: 本稿では,従来のLSTMネットワークに量子コンピューティングの原理を統合する量子LSTMモデルの理論的解析と実装計画を提案する。
シーケンシャルなデータ処理を強化するための実際のアーキテクチャとその実践的効果は、今後の研究で開発され、実証される。
- 参考スコア(独自算出の注目度): 2.938337278931738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid evolution of artificial intelligence has driven interest in Long Short-Term Memory (LSTM) networks for their effectiveness in processing sequential data. However, traditional LSTMs are limited by issues such as the vanishing gradient problem and high computational demands. Quantum computing offers a potential solution to these challenges, promising advancements in computational efficiency through the unique properties of qubits, such as superposition and entanglement. This paper presents a theoretical analysis and an implementation plan for a Quantum LSTM (qLSTM) model, which seeks to integrate quantum computing principles with traditional LSTM networks. While the proposed model aims to address the limitations of classical LSTMs, this study focuses primarily on the theoretical aspects and the implementation framework. The actual architecture and its practical effectiveness in enhancing sequential data processing remain to be developed and demonstrated in future work.
- Abstract(参考訳): 人工知能の急速な進化は、シーケンシャルデータの処理に有効であるために、Long Short-Term Memory (LSTM)ネットワークへの関心を惹き付けている。
しかし、従来のLSTMは、消失する勾配問題や高い計算要求といった問題によって制限されている。
量子コンピューティングはこれらの課題に対する潜在的な解決策を提供し、重畳や絡み合いのような量子ビットのユニークな性質を通じて計算効率の進歩を約束する。
本稿では,従来のLSTMネットワークに量子コンピューティングの原理を統合する量子LSTM(Quantum LSTM)モデルの理論的解析と実装計画を提案する。
提案モデルは,古典的LSTMの限界に対処することを目的としているが,本研究は主に理論的側面と実装フレームワークに焦点を当てている。
シーケンシャルなデータ処理を強化するための実際のアーキテクチャとその実践的効果は、今後の研究で開発され、実証される。
関連論文リスト
- Quantum Kernel-Based Long Short-term Memory [0.30723404270319693]
本稿では,Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) ネットワークを導入する。
この量子化アーキテクチャは、効率的な収束、ロバストな損失最小化、モデルコンパクト性を示す。
ベンチマークの結果,QK-LSTMは従来のLSTMモデルと同等の性能を示すが,パラメータは少ない。
論文 参考訳(メタデータ) (2024-11-20T11:39:30Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
量子トレイン(Quantum-Train、QT)は、量子古典機械学習のハイブリッドフレームワークである。
量子状態の測定を古典的なニューラルネットワークの重みにマッピングする。
従来のQTフレームワークでは、このタスクにマルチレイヤパーセプトロン(MLP)を採用しているが、スケーラビリティと解釈可能性に苦慮している。
複数の小さな量子処理ユニットノードを持つ大規模量子機械学習用に設計された分散回路アンサッツを提案する。
論文 参考訳(メタデータ) (2024-09-11T03:51:34Z) - Unlocking the Power of LSTM for Long Term Time Series Forecasting [27.245021350821638]
本稿では, sLSTM 上に実装したP-sLSTM という単純なアルゴリズムを提案する。
これらの改良により、TSFにおけるsLSTMの性能が大幅に向上し、最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-08-19T13:59:26Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
本稿では、将来のネットワークにおける最適化タスクを解決するために、量子コンピュータと量子チャネルを管理するための適応型分散量子コンピューティング手法を提案する。
提案手法に基づいて,スマートグリッド管理やIoT連携,UAV軌道計画など,今後のネットワークにおける協調最適化の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Quantum Long Short-Term Memory [3.675884635364471]
LSTM(Long Short-term memory)は、シーケンスおよび時間依存性データモデリングのためのリカレントニューラルネットワーク(RNN)である。
本稿では,QLSTMを疑似化したLSTMのハイブリッド量子古典モデルを提案する。
我々の研究は、ノイズの多い中間スケール量子(NISQ)デバイス上でのシーケンスモデリングのための機械学習アルゴリズムの実装への道を開いた。
論文 参考訳(メタデータ) (2020-09-03T16:41:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。