論文の概要: Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
- arxiv url: http://arxiv.org/abs/2406.09262v1
- Date: Thu, 13 Jun 2024 16:02:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:55:18.360873
- Title: Flexible Heteroscedastic Count Regression with Deep Double Poisson Networks
- Title(参考訳): Deep Double Poisson Networks を用いたフレキシブル・ヘテロセダスティックカウント回帰
- Authors: Spencer Young, Porter Jenkins, Lonchao Da, Jeff Dotson, Hua Wei,
- Abstract要約: ニューラルネットワークを用いてDouble Poisson分布のパラメータを出力する。
DDPNは既存の離散モデルよりも大幅に優れていることを示す。
DDPNは、様々なカウント回帰データセットに容易に適用できる。
- 参考スコア(独自算出の注目度): 4.58556584533865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks that can produce accurate, input-conditional uncertainty representations are critical for real-world applications. Recent progress on heteroscedastic continuous regression has shown great promise for calibrated uncertainty quantification on complex tasks, like image regression. However, when these methods are applied to discrete regression tasks, such as crowd counting, ratings prediction, or inventory estimation, they tend to produce predictive distributions with numerous pathologies. We propose to address these issues by training a neural network to output the parameters of a Double Poisson distribution, which we call the Deep Double Poisson Network (DDPN). In contrast to existing methods that are trained to minimize Gaussian negative log likelihood (NLL), DDPNs produce a proper probability mass function over discrete output. Additionally, DDPNs naturally model under-, over-, and equi-dispersion, unlike networks trained with the more rigid Poisson and Negative Binomial parameterizations. We show DDPNs 1) vastly outperform existing discrete models; 2) meet or exceed the accuracy and flexibility of networks trained with Gaussian NLL; 3) produce proper predictive distributions over discrete counts; and 4) exhibit superior out-of-distribution detection. DDPNs can easily be applied to a variety of count regression datasets including tabular, image, point cloud, and text data.
- Abstract(参考訳): 入力条件の不確実性表現を正確に生成できるニューラルネットワークは、現実世界のアプリケーションには不可欠である。
最近の不連続回帰の進歩は、画像回帰のような複雑なタスクにおける不確実性定量化を校正する大きな可能性を示している。
しかし、これらの手法が、クラウドカウント、評価予測、在庫推定などの離散回帰タスクに適用される場合、多くの病態を持つ予測分布を生成する傾向にある。
本稿では、ニューラルネットワークをトレーニングして、DDPN(Deep Double Poisson Network)と呼ばれるDouble Poisson分布のパラメータを出力することで、これらの問題を解決することを提案する。
ガウス陰対数(NLL)を最小化するために訓練された既存の手法とは対照的に、DDPNは離散出力よりも適切な確率質量関数を生成する。
さらに、DDPNは、より厳密なPoissonと負二項パラメータ化で訓練されたネットワークとは異なり、アンダー、オーバー、エクイ分散を自然にモデル化する。
DDPNをお見せします
1) 既存の離散モデルを大幅に上回る。
2) ガウスNLLで訓練されたネットワークの精度と柔軟性を満たすか、超えるか。
3) 個別の数に対して適切な予測分布を生成し、
4) より優れたアウト・オブ・ディストリビューション検出を示す。
DDPNは、表、画像、ポイントクラウド、テキストデータなど、さまざまなカウントレグレッションデータセットに容易に適用できる。
関連論文リスト
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
潜伏二元系ベイズニューラルネットワーク(LBBNN)の2つの拡張について検討する。
まず、隠れたユニットを直接サンプリングするためにLRT(Local Reparametrization trick)を用いることで、より計算効率の良いアルゴリズムが得られる。
さらに, LBBNNパラメータの変動後分布の正規化フローを用いて, 平均体ガウス分布よりも柔軟な変動後分布を学習する。
論文 参考訳(メタデータ) (2023-05-05T09:40:28Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unifying supervised learning and VAEs -- coverage, systematics and
goodness-of-fit in normalizing-flow based neural network models for
astro-particle reconstructions [0.0]
統計的不確実性、包括性、体系的不確実性、あるいは適度な尺度はしばしば計算されない。
データとラベルの共分散のKL分割の目的は、教師付き学習と変分オートエンコーダの統合を可能にすることを示す。
本稿では,特定の「基本順序」輪郭の数値積分を伴わずにカバレッジ確率を計算する方法について論じる。
論文 参考訳(メタデータ) (2020-08-13T11:28:57Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。