論文の概要: Modified Risk Formulation for Improving the Prediction of Knee Osteoarthritis Progression
- arxiv url: http://arxiv.org/abs/2406.10119v1
- Date: Fri, 14 Jun 2024 15:24:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 13:06:25.431573
- Title: Modified Risk Formulation for Improving the Prediction of Knee Osteoarthritis Progression
- Title(参考訳): 変形型リスクフォーミュレーションによる膝関節症進行予測の改善
- Authors: Haresh Rengaraj Rajamohan, Richard Kijowski, Kyunghyun Cho, Cem M. Deniz,
- Abstract要約: 変形性関節症(OA)の予後を予測するための現在の手法は、疾患固有の先行知識を取り入れていない。
我々は,OA結果予測を改善するために連続画像解析を効果的に活用する新しい手法を開発した。
- 参考スコア(独自算出の注目度): 36.12790384412525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current methods for predicting osteoarthritis (OA) outcomes do not incorporate disease specific prior knowledge to improve the outcome prediction models. We developed a novel approach that effectively uses consecutive imaging studies to improve OA outcome predictions by incorporating an OA severity constraint. This constraint ensures that the risk of OA for a knee should either increase or remain the same over time. DL models were trained to predict TKR within multiple time periods (1 year, 2 years, and 4 years) using knee radiographs and MRI scans. Models with and without the risk constraint were evaluated using the area under the receiver operator curve (AUROC) and the area under the precision recall curve (AUPRC) analysis. The novel RiskFORM2 method, leveraging a dual model risk constraint architecture, demonstrated superior performance, yielding an AUROC of 0.87 and AUPRC of 0.47 for 1 year TKR prediction on the OAI radiograph test set, a marked improvement over the 0.79 AUROC and 0.34 AUPRC of the baseline approach. The performance advantage extended to longer followup periods, with RiskFORM2 maintaining a high AUROC of 0.86 and AUPRC of 0.75 in predicting TKR within 4 years. Additionally, when generalizing to the external MOST radiograph test set, RiskFORM2 generalized better with an AUROC of 0.77 and AUPRC of 0.25 for 1 year predictions, which was higher than the 0.71 AUROC and 0.19 AUPRC of the baseline approach. In the MRI test sets, similar patterns emerged, with RiskFORM2 outperforming the baseline approach consistently. However, RiskFORM1 exhibited the highest AUROC of 0.86 and AUPRC of 0.72 for 4 year predictions on the OAI set.
- Abstract(参考訳): 変形性関節症 (OA) の発症予測法は, 予後予測モデルを改善するために, 疾患特異的な先行知識を取り入れていない。
我々は,OA重度制約を組み込んだ連続画像を用いたOA結果予測を効果的に活用する手法を開発した。
この制約により、膝に対するOAのリスクは、時間とともに増加するか、同じ状態のままでいなければならない。
DLモデルは、膝X線写真とMRIスキャンを用いて、複数の時間(1年、2年、4年)でTKRを予測するために訓練された。
リスク制約のないモデルは、受信者演算子曲線(AUROC)と高精度リコール曲線(AUPRC)分析(AUPRC)に基づいて評価した。
新たなリスクフォーマ2法は、二重モデルリスク制約アーキテクチャを利用して、1年間のTKR予測で0.87AUROCと0.47AUPRCを出力し、ベースラインアプローチでは0.79AUROCと0.34AUPRCを大きく改善した。
性能上の優位性は、長い追従期間にまで拡張され、リスクフォーマ2は4年以内に高いAUROCの0.86とAUPRCの0.75を維持した。
さらに、外部MOSTテストセットに一般化すると、リスクホルム2は1年間の予測でAUROCが0.77、AUPRCが0.25、ベースラインアプローチが0.71、AUPRCが0.19であった。
MRIテストセットでは、同様のパターンが出現し、R RiskFORM2はベースラインアプローチを一貫して上回る結果となった。
しかし、リスクフォーム1は、OAIセットの4年間の予測において、AUROCが0.86、AUPRCが0.72の最高値を示した。
関連論文リスト
- A Staged Approach using Machine Learning and Uncertainty Quantification to Predict the Risk of Hip Fracture [7.28435301162289]
本研究は, 高齢者および中高年者における股関節骨折リスクの予測に焦点をあてる。
本稿では,高度な画像と臨床データを組み合わせて予測性能を向上させる新しいステージドモデルを提案する。
論文 参考訳(メタデータ) (2024-05-30T14:01:02Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
非転移性肛門扁平上皮癌(SCC)患者の約30%が化学療法後の再発を経験する
我々は,放射線前処置計画CTから抽出した情報を利用して,CRT後のSCC患者における再発無生存(RFS)を予測するモデルを開発した。
論文 参考訳(メタデータ) (2023-09-05T20:22:26Z) - GRU-D-Weibull: A Novel Real-Time Individualized Endpoint Prediction [10.871599399011306]
ワイブル分布をモデル化するために、ゲート再帰単位と崩壊(GRU-D)を組み合わせた新しいアプローチGRU-D-Weibullを提案する。
4期慢性腎臓病(CKD4)6,879例のコホートを用いて,GRU-D-Weibullの終末予測成績を検討した。
提案手法はCKD4指数で1.1年(SD 0.95)、フォローアップ4年で0.45年(SD0.3)の絶対L1損失を達成し,競合法よりも有意に優れていた。
論文 参考訳(メタデータ) (2023-08-14T20:46:16Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
我々は、リスクスコアと機械学習モデルの両方の最高の特徴を組み合わせた、新たなリスクアセスメント方法論を作成するつもりです。
提案手法は、標準LRと同一の試験結果を得たが、より優れた解釈性とパーソナライゼーションを提供する。
個人予測の信頼性推定は誤分類率と大きな相関を示した。
論文 参考訳(メタデータ) (2021-10-15T19:33:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。