In-depth analysis of recall initiators of medical devices with a Machine Learning-Natural language Processing workflow
- URL: http://arxiv.org/abs/2406.10312v1
- Date: Fri, 14 Jun 2024 12:38:49 GMT
- Title: In-depth analysis of recall initiators of medical devices with a Machine Learning-Natural language Processing workflow
- Authors: Yang Hu,
- Abstract summary: This study identified, assessed and analysed the medical device recall initiators according to the public medical device recall database from 2018 to 2024.
The results suggest that the unsupervised Density-Based Spatial Clustering of Applications with Noise clustering algorithm can present each single recall initiator in a specific manner.
- Score: 3.392104905453323
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recall initiator identification and assessment are the preliminary steps to prevent medical device recall. Conventional analysis tools are inappropriate for processing massive and multi-formatted data comprehensively and completely to meet the higher expectations of delicacy management with the increasing overall data volume and textual data format. This study presents a bigdata-analytics-based machine learning-natural language processing work tool to address the shortcomings in dealing efficiency and data process versatility of conventional tools in the practical context of big data volume and muti data format. This study identified, assessed and analysed the medical device recall initiators according to the public medical device recall database from 2018 to 2024 with the ML-NLP tool. The results suggest that the unsupervised Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm can present each single recall initiator in a specific manner, therefore helping practitioners to identify the recall reasons comprehensively and completely within a short time frame. This is then followed by text similarity-based textual classification to assist practitioners in controlling the group size of recall initiators and provide managerial insights from the operational to the tactical and strategical levels. This ML-NLP work tool can not only capture specific details of each recall initiator but also interpret the inner connection of each existing initiator and can be implemented for risk identification and assessment in the forward SC. Finally, this paper suggests some concluding remarks and presents future works. More proactive practices and control solutions for medical device recalls are expected in the future.
Related papers
- When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Shifting to Machine Supervision: Annotation-Efficient Semi and Self-Supervised Learning for Automatic Medical Image Segmentation and Classification [9.67209046726903]
We introduce the S4MI pipeline, a novel approach that leverages advancements in self-supervised and semi-supervised learning.
Our study benchmarks these techniques on three distinct medical imaging datasets to evaluate their effectiveness in classification and segmentation tasks.
Remarkably, the semi-supervised approach demonstrated superior outcomes in segmentation, outperforming fully-supervised methods while using 50% fewer labels across all datasets.
arXiv Detail & Related papers (2023-11-17T04:04:29Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Machine Learning, Deep Learning and Data Preprocessing Techniques for Detection, Prediction, and Monitoring of Stress and Stress-related Mental Disorders: A Scoping Review [0.0]
Mental stress and its consequent mental disorders (MDs) are significant public health issues.
With the advent of machine learning (ML), there's potential to harness computational techniques for better understanding and addressing these problems.
This review aims to investigate the scope of ML methodologies used in the detection, prediction, and analysis of mental stress and MDs.
arXiv Detail & Related papers (2023-08-08T22:47:12Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
The number of manuscripts related to machine learning or artificial intelligence has exponentially increased over the past years.
In the first section, we provide explanations on the general principles of machine learning.
In further sections, we review the importance of resampling, overfitting and model generalizability and strategies for model evaluation.
arXiv Detail & Related papers (2020-06-23T20:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.