論文の概要: Towards Supporting Legal Argumentation with NLP: Is More Data Really All You Need?
- arxiv url: http://arxiv.org/abs/2406.10974v3
- Date: Tue, 15 Oct 2024 15:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:33.706522
- Title: Towards Supporting Legal Argumentation with NLP: Is More Data Really All You Need?
- Title(参考訳): NLPによる法的調停支援に向けて: 必要なデータはすべて必要か?
- Authors: T. Y. S. S Santosh, Kevin D. Ashley, Katie Atkinson, Matthias Grabmair,
- Abstract要約: 訴訟における決定を正当化する法的推論と議論は、常にAIと法の中心であった。
法律NLPの最近の発展は、テキストから法的結論を統計的に分類することに集中している。
本稿では,AIと法学における伝統的な象徴的著作と,近年の法的NLPの進歩を概観する。
- 参考スコア(独自算出の注目度): 1.6311895940869516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling legal reasoning and argumentation justifying decisions in cases has always been central to AI & Law, yet contemporary developments in legal NLP have increasingly focused on statistically classifying legal conclusions from text. While conceptually simpler, these approaches often fall short in providing usable justifications connecting to appropriate legal concepts. This paper reviews both traditional symbolic works in AI & Law and recent advances in legal NLP, and distills possibilities of integrating expert-informed knowledge to strike a balance between scalability and explanation in symbolic vs. data-driven approaches. We identify open challenges and discuss the potential of modern NLP models and methods that integrate
- Abstract(参考訳): 訴訟における法的推論と議論の正当化は、常にAIと法の中心であるが、法的なNLPにおける現代の発展は、テキストから法的結論を統計的に分類することに集中している。
概念的には単純であるが、これらのアプローチは適切な法的概念に結びつく有効な正当化を提供するには不十分であることが多い。
本稿では,AIと法学における従来の象徴的研究と,近年の法律的NLPの進歩の両面を概観し,専門家による知識統合の可能性について考察する。
我々はオープンな課題を特定し、統合された現代のNLPモデルと方法の可能性について議論する。
関連論文リスト
- A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - The explanation dialogues: an expert focus study to understand requirements towards explanations within the GDPR [47.06917254695738]
我々は、XAIに対する法的専門家や実践者の期待、推論、理解を明らかにするための専門的な研究である説明対話(Explaination Dialogues)を提示する。
調査はオンラインアンケートとフォローアップインタビューで構成されており、クレジットドメインのユースケースを中心に行われている。
提示された説明は、情報を理解して欠くことは困難であり、データコントローラと主題の異なる関心事から生じる問題について議論する。
論文 参考訳(メタデータ) (2025-01-09T15:50:02Z) - Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges [4.548047308860141]
本調査は,手動フィルタリング後の133項目を最終選択した154の研究をレビューし,システムレビューおよびメタ分析フレームワークの優先報告項目に従う。
法律分野におけるNLPに関する基礎概念を探求し、法律文書の処理の独特な側面と課題を詳述する。
本稿では,法的文書要約,法的名称付きエンティティ認識,法的質問回答,法的条項マイニング,法的テキスト分類,法的判断予測など,法的テキストに特有のNLPタスクの概要について述べる。
論文 参考訳(メタデータ) (2024-10-25T01:17:02Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Towards Explainability in Legal Outcome Prediction Models [64.00172507827499]
我々は、前例が法的NLPモデルの説明可能性を促進する自然な方法であると主張している。
法的な先例の分類法を開発することで、人間の判断と神経モデルを比較することができる。
モデルが合理的に結果を予測することを学習する一方で、前例の使用は人間の判断とは違い、ということがわかりました。
論文 参考訳(メタデータ) (2024-03-25T15:15:41Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - The Legal Argument Reasoning Task in Civil Procedure [2.079168053329397]
我々は,米国民事訴訟の領域から新たなNLPタスクとデータセットを提示する。
データセットの各インスタンスは、ケースの一般的な導入、特定の質問、可能な解決策引数で構成されている。
論文 参考訳(メタデータ) (2022-11-05T17:41:00Z) - Legal Detection of AI Products Based on Formal Argumentation and Legal
Ontology [4.286330841427189]
本稿では,法的文脈における推論のための構造化議論フレームワークを提案する。
この形式的議論理論とDLに基づく法論理を組み合わせることで、許容できるアサーションが得られることを示す。
論文 参考訳(メタデータ) (2022-09-07T11:08:08Z) - Mining Legal Arguments in Court Decisions [43.09204050756282]
我々は,欧州人権裁判所の手続において,法的議論のための新たな注釈体系を開発する。
第2に、373の判決の大規模なコーパスをコンパイルし、注釈を付ける。
第三に、法的なNLPドメインにおける最先端モデルよりも優れた引数マイニングモデルを訓練する。
論文 参考訳(メタデータ) (2022-08-12T08:59:55Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - On the Ethical Limits of Natural Language Processing on Legal Text [9.147707153504117]
自然言語処理システムの使用に対する倫理的限界を特定する上で、研究者は苦戦していると論じている。
我々は、現在の議論によって過小評価された3つの重要な規範的パラメータに重点を置く。
これら3つのパラメータのそれぞれについて、法的NLPコミュニティに具体的な推奨事項を提供します。
論文 参考訳(メタデータ) (2021-05-06T15:22:24Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。