論文の概要: Conditional score-based diffusion models for solving inverse problems in mechanics
- arxiv url: http://arxiv.org/abs/2406.13154v2
- Date: Fri, 21 Jun 2024 19:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 11:16:10.719815
- Title: Conditional score-based diffusion models for solving inverse problems in mechanics
- Title(参考訳): 力学における逆問題解決のための条件付きスコアベース拡散モデル
- Authors: Agnimitra Dasgupta, Harisankar Ramaswamy, Javier Murgoitio Esandi, Ken Foo, Runze Li, Qifa Zhou, Brendan Kennedy, Assad Oberai,
- Abstract要約: 条件付きスコアベース拡散モデルを用いてベイズ推定を行う枠組みを提案する。
条件付きスコアベース拡散モデルは条件分布のスコア関数を近似する生成モデルである。
メカニクスにおける高次元逆問題に対して提案手法の有効性を示す。
- 参考スコア(独自算出の注目度): 6.319616423658121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a framework to perform Bayesian inference using conditional score-based diffusion models to solve a class of inverse problems in mechanics involving the inference of a specimen's spatially varying material properties from noisy measurements of its mechanical response to loading. Conditional score-based diffusion models are generative models that learn to approximate the score function of a conditional distribution using samples from the joint distribution. More specifically, the score functions corresponding to multiple realizations of the measurement are approximated using a single neural network, the so-called score network, which is subsequently used to sample the posterior distribution using an appropriate Markov chain Monte Carlo scheme based on Langevin dynamics. Training the score network only requires simulating the forward model. Hence, the proposed approach can accommodate black-box forward models and complex measurement noise. Moreover, once the score network has been trained, it can be re-used to solve the inverse problem for different realizations of the measurements. We demonstrate the efficacy of the proposed approach on a suite of high-dimensional inverse problems in mechanics that involve inferring heterogeneous material properties from noisy measurements. Some examples we consider involve synthetic data, while others include data collected from actual elastography experiments. Further, our applications demonstrate that the proposed approach can handle different measurement modalities, complex patterns in the inferred quantities, non-Gaussian and non-additive noise models, and nonlinear black-box forward models. The results show that the proposed framework can solve large-scale physics-based inverse problems efficiently.
- Abstract(参考訳): 本研究では, 条件付きスコアベース拡散モデルを用いてベイズ推定を行い, 荷重に対する機械的応答のノイズ測定から, 試料の空間的に変化する材料特性を推定する機構の逆問題クラスを解く枠組みを提案する。
条件付きスコアベース拡散モデル(英: Conditional score-based diffusion model)は、条件付き分布のスコア関数を、共同分布からのサンプルを用いて近似する生成モデルである。
より具体的には、測定の多重実現に対応するスコア関数を、単一のニューラルネットワーク、いわゆるスコアネットワークを用いて近似し、その後、ランゲヴィン力学に基づく適切なマルコフ連鎖モンテカルロスキームを用いて後部分布をサンプリングする。
スコアネットワークをトレーニングするには、フォワードモデルをシミュレートする必要がある。
したがって、提案手法はブラックボックスフォワードモデルと複雑な測定ノイズに対応できる。
さらに、一度スコアネットワークをトレーニングすれば、測定の異なる実現のための逆問題の解決に再利用することができる。
ノイズ測定から異種材料特性を推定する力学における高次元逆問題に対して,提案手法の有効性を実証する。
合成データを含むと考える例や、実際のエラストグラフィー実験から収集したデータを含む例がある。
さらに, 提案手法は, 異なる測定モダリティ, 推定量の複雑なパターン, 非ガウス雑音モデル, 非ガウス雑音モデル, 非線形ブラックボックスフォワードモデルに対応できることを示す。
その結果,提案フレームワークは大規模物理学に基づく逆問題の解法を効率的に行うことができることがわかった。
関連論文リスト
- Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Generative Diffusion From An Action Principle [0.0]
スコアマッチングは、物理でよく用いられるようなアクション原理から導出できることを示す。
この洞察を用いて、異なる拡散モデルのクラス間の関係を実証する。
論文 参考訳(メタデータ) (2023-10-06T18:00:00Z) - Inferring effective couplings with Restricted Boltzmann Machines [3.150368120416908]
生成モデルは、ニューラルネットワークの形でエネルギー関数に関連するボルツマン重みのレベルで観測された相関を符号化しようとする。
制限ボルツマンマシンと有効イジングスピンハミルトニアンとの直接写像を実装した解を提案する。
論文 参考訳(メタデータ) (2023-09-05T14:55:09Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Removing Structured Noise with Diffusion Models [14.187153638386379]
拡散モデルによる後方サンプリングの強力なパラダイムは、リッチで構造化されたノイズモデルを含むように拡張可能であることを示す。
構成雑音による様々な逆問題に対して高い性能向上を示し、競争的ベースラインよりも優れた性能を示す。
これにより、非ガウス測度モデルの文脈における逆問題に対する拡散モデリングの新しい機会と関連する実践的応用が開かれる。
論文 参考訳(メタデータ) (2023-01-20T23:42:25Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - From Denoising Diffusions to Denoising Markov Models [38.33676858989955]
デノイング拡散は、顕著な経験的性能を示す最先端の生成モデルである。
本稿では、この手法を広い範囲に一般化し、スコアマッチングのオリジナル拡張につながる統一フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T14:34:27Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。