論文の概要: Investigating Low-Cost LLM Annotation for~Spoken Dialogue Understanding Datasets
- arxiv url: http://arxiv.org/abs/2406.13269v1
- Date: Wed, 19 Jun 2024 06:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 22:49:46.633017
- Title: Investigating Low-Cost LLM Annotation for~Spoken Dialogue Understanding Datasets
- Title(参考訳): 音声対話理解データセットのための低コストLPMアノテーションの検討
- Authors: Lucas Druart, Valentin Vielzeuf, Yannick Estève,
- Abstract要約: 音声タスク指向対話(TOD)システムでは、ユーザの要求を記述した意味表現の選択がスムーズな対話の鍵となる。
本稿では,音声対話データセットのセマンティック表現の自動強化に関する知見を提供する。
- 参考スコア(独自算出の注目度): 9.78470355087662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In spoken Task-Oriented Dialogue (TOD) systems, the choice of the semantic representation describing the users' requests is key to a smooth interaction. Indeed, the system uses this representation to reason over a database and its domain knowledge to choose its next action. The dialogue course thus depends on the information provided by this semantic representation. While textual datasets provide fine-grained semantic representations, spoken dialogue datasets fall behind. This paper provides insights into automatic enhancement of spoken dialogue datasets' semantic representations. Our contributions are three fold: (1) assess the relevance of Large Language Model fine-tuning, (2) evaluate the knowledge captured by the produced annotations and (3) highlight semi-automatic annotation implications.
- Abstract(参考訳): 音声タスク指向対話(TOD)システムでは、ユーザの要求を記述した意味表現の選択がスムーズな対話の鍵となる。
実際、システムはこの表現を使ってデータベースとそのドメイン知識を推論し、次のアクションを選択する。
したがって、対話コースは、この意味表現によって提供される情報に依存する。
テキストデータセットはきめ細かな意味表現を提供するが、音声対話データセットは遅れる。
本稿では,音声対話データセットのセマンティック表現の自動強化に関する知見を提供する。
筆者らの貢献は,(1)大規模言語モデルの微調整の関連性を評価すること,(2)生成したアノテーションが捉えた知識を評価すること,(3)半自動アノテーションの意義を強調すること,の3つだ。
関連論文リスト
- Learning from Emotions, Demographic Information and Implicit User
Feedback in Task-Oriented Document-Grounded Dialogues [59.516187851808375]
FEDIは、人口統計情報、ユーザ感情、暗黙のフィードバックを付加したタスク指向文書地上対話のための最初の英語対話データセットである。
FLAN-T5, GPT-2, LLaMA-2 を用いて行った実験から,これらのデータにより,タスク完了と実際の応答の整合性,ユーザの受容性が改善される可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-17T14:52:26Z) - A Unified Framework for Slot based Response Generation in a Multimodal
Dialogue System [25.17100881568308]
自然言語理解(NLU)と自然言語生成(NLG)は、すべての会話システムにおいて重要な要素である。
発話から必要なスロット値を抽出できるエンドツーエンドフレームワークを提案する。
事前学習したダイアロGPTを用いたマルチモーダル階層エンコーダを用いて、両方のタスクに対してより強力なコンテキストを提供する。
論文 参考訳(メタデータ) (2023-05-27T10:06:03Z) - Context-Dependent Embedding Utterance Representations for Emotion
Recognition in Conversations [1.8126187844654875]
我々は会話の文脈を利用した会話における感情認識にアプローチする。
それぞれの発話の文脈依存的な埋め込み表現を提案する。
提案手法の有効性は,オープンドメインのDailyDialogデータセットとタスク指向のEmoWOZデータセットで検証される。
論文 参考訳(メタデータ) (2023-04-17T12:37:57Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - Improve Retrieval-based Dialogue System via Syntax-Informed Attention [46.79601705850277]
文内構文情報と文間構文情報の両方を考慮したSIA, Syntax-Informed Attentionを提案する。
提案手法を広範に使用した3つのベンチマークで評価し,対話応答選択における本手法の一般的な優位性を示す実験結果を得た。
論文 参考訳(メタデータ) (2023-03-12T08:14:16Z) - Dialogue Term Extraction using Transfer Learning and Topological Data
Analysis [0.8185867455104834]
我々は、純粋にデータ駆動方式で対話におけるドメイン、スロット、値の認識を可能にするさまざまな機能を探究する。
各特徴セットの有用性を検討するために、広く使われているMultiWOZデータセットに基づいてシードモデルを訓練する。
提案手法は,単語の埋め込みのみに依存する従来の手法よりも優れている。
論文 参考訳(メタデータ) (2022-08-22T17:04:04Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Language Model as an Annotator: Exploring DialoGPT for Dialogue
Summarization [29.887562761942114]
本稿では,対話応答生成のための事前学習モデルであるDialoGPTを,教師なし対話アノテータとして開発する方法を示す。
ダイアロGPTを用いて、2つの対話要約データセット(SAMSumとAMI)に3種類の特徴をラベル付けし、事前学習モデルと非訓練モデルを用いて要約する。
論文 参考訳(メタデータ) (2021-05-26T13:50:13Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
本稿では,トピック認識発話を教師なしでセグメント化して抽出する,多元対話モデリングのための新しいソリューションを提案する。
トピック・アウェア・モデリングは、新たに提案されたトピック・アウェア・セグメンテーション・アルゴリズムとトピック・アウェア・デュアル・アテンション・マッチング(TADAM)ネットワークによって実現されている。
論文 参考訳(メタデータ) (2020-09-26T08:43:06Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
対話型レコメンデータシステム(CRS)は,対話型対話を通じて高品質なアイテムをユーザに推薦することを目的としている。
まず、会話データ自体にユーザの好みを正確に理解するための十分なコンテキスト情報がない。
第二に、自然言語表現とアイテムレベルのユーザ嗜好の間には意味的なギャップがある。
論文 参考訳(メタデータ) (2020-07-08T11:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。