論文の概要: An evidential time-to-event prediction model based on Gaussian random fuzzy numbers
- arxiv url: http://arxiv.org/abs/2406.13487v1
- Date: Wed, 19 Jun 2024 12:14:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 19:53:21.024967
- Title: An evidential time-to-event prediction model based on Gaussian random fuzzy numbers
- Title(参考訳): ガウス乱ファジィ数に基づく明らかな時間-時間予測モデル
- Authors: Ling Huang, Yucheng Xing, Thierry Denoeux, Mengling Feng,
- Abstract要約: 検閲データを用いた時間-時間予測のための明らかなモデルを提案する。
事象時間の不確かさはガウス乱ファジィ数によって定量化される。
- 参考スコア(独自算出の注目度): 12.753099158148887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an evidential model for time-to-event prediction with censored data. In this model, uncertainty on event time is quantified by Gaussian random fuzzy numbers, a newly introduced family of random fuzzy subsets of the real line with associated belief functions, generalizing both Gaussian random variables and Gaussian possibility distributions. Our approach makes minimal assumptions about the underlying time-to-event distribution. The model is fit by minimizing a generalized negative log-likelihood function that accounts for both normal and censored data. Comparative experiments on two real-world datasets demonstrate the very good performance of our model as compared to the state-of-the-art.
- Abstract(参考訳): 検閲データを用いた時間-時間予測のための明らかなモデルを提案する。
このモデルでは、事象時間の不確実性は、ガウス確率分布とガウス確率分布の両方を一般化し、関連する信念関数を持つ実線のランダムファジィ部分集合であるガウス確率ファジィ数によって定量化される。
我々の手法は、基礎となる時間-時間分布について最小限の仮定を行う。
このモデルは、正規データと検閲データの両方を考慮に入れた一般化された負のログ様関数を最小化することで適合する。
2つの実世界のデータセットの比較実験は、最先端のモデルと比較して、我々のモデルの非常に優れた性能を示している。
関連論文リスト
- Diffusion Random Feature Model [0.0]
本稿では,拡散モデルにインスパイアされた深部ランダム特徴モデルを提案する。
サンプルデータの分布と真の分布との一般化境界をスコアマッチングの特性を用いて導出する。
ファッションMNISTデータセットとインストゥルメンタルオーディオデータに基づいてサンプルを生成し,本研究の検証を行った。
論文 参考訳(メタデータ) (2023-10-06T17:59:05Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Performative Prediction with Neural Networks [22.66295224352892]
パフォーマンス予測は、予測するデータに影響を与えるモデルを学習するためのフレームワークである。
繰り返しリスク最小化法を用いて、性能的に安定な分類器を見つけるための標準収束結果は、データの分布がモデルのパラメータに連続であることを仮定する。
この研究では、データ分布はモデルの予測に関してリプシッツ連続であると仮定する。
論文 参考訳(メタデータ) (2023-04-14T01:12:48Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
本稿では,ハマー確率分布として表される観測データの可能性を考慮した,ガウス過程フレームワークにおけるロバストなプロセスモデルを提案する。
提案モデルでは、予測統計に基づく重みを用いて、残差を拡大し、潜伏関数推定における垂直外れ値と悪レバレッジ点の影響を限定する。
論文 参考訳(メタデータ) (2023-01-19T02:59:33Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Latent Gaussian Model Boosting [0.0]
ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
論文 参考訳(メタデータ) (2021-05-19T07:36:30Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。