論文の概要: Integrating Fuzzy Logic with Causal Inference: Enhancing the Pearl and Neyman-Rubin Methodologies
- arxiv url: http://arxiv.org/abs/2406.13731v1
- Date: Wed, 19 Jun 2024 17:54:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 18:45:06.695873
- Title: Integrating Fuzzy Logic with Causal Inference: Enhancing the Pearl and Neyman-Rubin Methodologies
- Title(参考訳): ファジィ論理と因果推論の統合:PearlとNeyman-Rubin方法論の強化
- Authors: Amir Saki, Usef Faghihi,
- Abstract要約: データに固有の曖昧さと不正確さの両方を考慮したファジィ因果推論手法を提案する。
線形構造方程式モデル (SEM) の場合, 正規化された式であるNFATE と NGFATE は ATE と同値であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we generalize the Pearl and Neyman-Rubin methodologies in causal inference by introducing a generalized approach that incorporates fuzzy logic. Indeed, we introduce a fuzzy causal inference approach that consider both the vagueness and imprecision inherent in data, as well as the subjective human perspective characterized by fuzzy terms such as 'high', 'medium', and 'low'. To do so, we introduce two fuzzy causal effect formulas: the Fuzzy Average Treatment Effect (FATE) and the Generalized Fuzzy Average Treatment Effect (GFATE), together with their normalized versions: NFATE and NGFATE. When dealing with a binary treatment variable, our fuzzy causal effect formulas coincide with classical Average Treatment Effect (ATE) formula, that is a well-established and popular metric in causal inference. In FATE, all values of the treatment variable are considered equally important. In contrast, GFATE takes into account the rarity and frequency of these values. We show that for linear Structural Equation Models (SEMs), the normalized versions of our formulas, NFATE and NGFATE, are equivalent to ATE. Further, we provide identifiability criteria for these formulas and show their stability with respect to minor variations in the fuzzy subsets and the probability distributions involved. This ensures the robustness of our approach in handling small perturbations in the data. Finally, we provide several experimental examples to empirically validate and demonstrate the practical application of our proposed fuzzy causal inference methods.
- Abstract(参考訳): 本稿では,ファジィ論理を取り入れた一般化アプローチを導入することにより,因果推論におけるパール法とナイマン・ルービン法を一般化する。
実際、データに固有の曖昧さと不正確さを両立させるファジィ因果推論手法を導入するとともに、「高」「中」「低」といったファジィ用語を特徴とする主観的人間観も導入する。
そこで本研究では, ファジィ平均治療効果 (FATE) と一般ファジィ平均治療効果 (GFATE) の2つのファジィ因果効果式と, それらの正規化バージョンであるNFATEとNGFATEを紹介する。
2次処理変数を扱う場合、ファジィ因果効果公式は古典的平均処理効果(ATE)式と一致する。
FATEでは、処理変数のすべての値が等しく重要であると考えられる。
対照的にGFATEはこれらの値の希少性と頻度を考慮に入れている。
線形構造方程式モデル (SEM) の場合, 正規化された式であるNFATE と NGFATE は ATE と同値であることを示す。
さらに、これらの式に対する識別可能性基準を提供し、ファジィ部分集合と関連する確率分布の小さなばらつきに関して、それらの安定性を示す。
これにより、データ内の小さな摂動を処理する上で、私たちのアプローチの堅牢性が保証されます。
最後に, ファジィ因果推論手法の実践的応用を実証的に検証し, 実証するための実験例をいくつか提示する。
関連論文リスト
- Physics-Informed Neural Network based inverse framework for time-fractional differential equations for rheology [0.0]
時間差分方程式は、記憶効果によって特徴づけられる現象を捉えるための堅牢な枠組みを提供する。
しかし、分数微分を含む逆問題の解決は、安定性と特異性に関連する問題を含む顕著な課題を提示する。
本研究では, PINNの適用範囲を広げて, 時間-屈折微分を含む逆問題に対処し, 異常拡散と, 2) 分数粘弾性方程式の2つの問題を対象とする。
論文 参考訳(メタデータ) (2024-06-06T01:29:17Z) - Revisiting the Dataset Bias Problem from a Statistical Perspective [72.94990819287551]
統計的観点から「データセットバイアス」問題を考察する。
問題の主な原因は、クラス属性 u と非クラス属性 b の強い相関関係である。
本稿では,各試料nの目的をフラクタル1p(u_n|b_n)で重み付けするか,その試料をフラクタル1p(u_n|b_n)に比例してサンプリングすることにより,データセットバイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2024-02-05T22:58:06Z) - Distinguishing Cause from Effect on Categorical Data: The Uniform
Channel Model [0.0]
一対の確率変数の観測による効果による原因の識別は因果発見における中核的な問題である。
分類変数を用いた原因影響問題に対処するための基準を提案する。
我々は、条件付き確率質量関数が一様チャネル(UC)に最も近い因果方向として選択する。
論文 参考訳(メタデータ) (2023-03-14T13:54:11Z) - Large deviations rates for stochastic gradient descent with strongly
convex functions [11.247580943940916]
勾配降下を伴う一般高確率境界の研究のための公式な枠組みを提供する。
強い凸関数を持つSGDの上限となる大きな偏差が見つかる。
論文 参考訳(メタデータ) (2022-11-02T09:15:26Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
本稿では, 医療データを調和させる構造因果モデル (SCM) に対して, 反実的推論を行う正規化フローに基づく手法を提案する。
我々は,この手法が最先端のアルゴリズムよりもドメイン間一般化に寄与することを示すために,複数の,大規模な実世界の医療データセットを評価した。
論文 参考訳(メタデータ) (2021-06-12T19:57:35Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。