Quantum spin systems: toroidal classification and geometric duality
- URL: http://arxiv.org/abs/2406.13830v1
- Date: Wed, 19 Jun 2024 20:49:14 GMT
- Title: Quantum spin systems: toroidal classification and geometric duality
- Authors: Vahid Azimi-Mousolou, Anders Bergman, Anna Delin, Olle Eriksson, Manuel Pereiro, Danny Thonig, Erik Sjöqvist,
- Abstract summary: We show that bipartite quantum features in magnon-systems can manifest equivalently in both bipartite ferromagnetic and antiferromagnetic materials.
Results highlight the antiferromagnetic regime as an ultra-fast dual counterpart to the ferromagnetic regime.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Toroidal classification and geometric duality in quantum spin systems is presented. Through our classification and duality, we reveal that various bipartite quantum features in magnon-systems can manifest equivalently in both bipartite ferromagnetic and antiferromagnetic materials, based upon the availability of relevant Hamiltonian parameters. Additionally, the results highlight the antiferromagnetic regime as an ultra-fast dual counterpart to the ferromagnetic regime, both exhibiting identical capabilities for quantum spintronics and technological applications. Concrete illustrations are provided, demonstrating how splitting and squeezing types of two-mode magnon quantum correlations can be realized across ferro- and antiferromagnetic regimes.
Related papers
- Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.
Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Nonreciprocal Multipartite Entanglement in a two-cavity magnomechanical system [0.21990652930491852]
We propose a scheme for the generation of nonreciprocal multipartite entanglement in a two-mode cavity magnomechanical system.
Our results show that the magnon self-Kerr effect can significantly enhance bipartite entanglement, which turns out to be non-reciprocal when the magetic field is tuned along the crystallographic axis.
arXiv Detail & Related papers (2024-05-25T13:25:47Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
We study the effect of altermagnetism on the superconductivity of a two-dimensional metal with d-wave altermagnetism and Rashba spin-orbital coupling.
We show that a number of topological superconductors, including both first-order and second-order ones, can emerge when the p-wave pairing dominates.
arXiv Detail & Related papers (2023-05-17T18:00:00Z) - Revealing Emergent Magnetic Charge in an Antiferromagnet with Diamond
Quantum Magnetometry [42.60602838972598]
Whirling topological textures play a key role in exotic phases of magnetic materials and offer promise for logic and memory applications.
In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to ferromagnetic counterparts.
One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry.
arXiv Detail & Related papers (2023-03-21T18:30:20Z) - Hybrid quantum system with strong magnetic coupling of a magnetic vortex
to a nanomechanical resonator [2.04473038220853]
We present a hybrid quantum system composed of a magnetic vortex and a nanomechanical resonator.
The gyrotropic mode of the vortex can coherently couple to the quantized mechanical motion of the resonator through magnetic interaction.
arXiv Detail & Related papers (2023-01-25T07:12:50Z) - Driven-dissipative Quantum Dynamics in Cavity Magnon-Polariton System [4.22183654884537]
The dynamics of arbitrary-order quantum correlations in a cavity magnon-polariton system are investigated.
Results demonstrate the rich higher-order quantum dynamics induced by magnetic light-matter interaction.
arXiv Detail & Related papers (2021-07-22T03:42:59Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.