論文の概要: ImageFlowNet: Forecasting Multiscale Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images
- arxiv url: http://arxiv.org/abs/2406.14794v2
- Date: Tue, 2 Jul 2024 17:53:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:39:57.114712
- Title: ImageFlowNet: Forecasting Multiscale Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images
- Title(参考訳): ImageFlowNet:不規則にサンプリングされた縦断的医用画像による疾患進行のマルチスケール軌跡の予測
- Authors: Chen Liu, Ke Xu, Liangbo L. Shen, Guillaume Huguet, Zilong Wang, Alexander Tong, Danilo Bzdok, Jay Stewart, Jay C. Wang, Lucian V. Del Priore, Smita Krishnaswamy,
- Abstract要約: ImageFlowNetは、共同埋め込み空間におけるマルチスケール表現を進化させる潜在空間フローフィールドを学習する新しいフレームワークである。
我々は、ODEの定式化を支援し、高レベルの視覚的特徴を含む正規化を動機付ける理論的洞察を提供する。
- 参考スコア(独自算出の注目度): 44.107186498384024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The forecasting of disease progression from images is a holy grail for clinical decision making. However, this task is complicated by the inherent high dimensionality, temporal sparsity and sampling irregularity in longitudinal image acquisitions. Existing methods often rely on extracting hand-crafted features and performing time-series analysis in this vector space, leading to a loss of rich spatial information within the images. To overcome these challenges, we introduce ImageFlowNet, a novel framework that learns latent-space flow fields that evolve multiscale representations in joint embedding spaces using neural ODEs and SDEs to model disease progression in the image domain. Notably, ImageFlowNet learns multiscale joint representation spaces by combining cohorts of patients together so that information can be transferred between the patient samples. The dynamics then provide plausible trajectories of progression, with the SDE providing alternative trajectories from the same starting point. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We then demonstrate ImageFlowNet's effectiveness through empirical evaluations on three longitudinal medical image datasets depicting progression in retinal geographic atrophy, multiple sclerosis, and glioblastoma.
- Abstract(参考訳): 画像から病気の進行を予測することは、臨床的意思決定の聖杯である。
しかし, この課題は, 高次元性, 時空間性, サンプリング不規則性により複雑である。
既存の手法では、しばしば手作りの特徴を抽出し、このベクトル空間で時系列解析を行うことで、画像内の豊富な空間情報が失われる。
これらの課題を克服するために、我々は、ニューラルネットワークとSDEを用いて共同埋め込み空間におけるマルチスケール表現を進化させ、画像領域における病気の進行をモデル化する、潜時空間流れ場を学習する新しいフレームワークであるImageFlowNetを紹介した。
特に、ImageFlowNetは、患者のコホートを組み合わせて、患者サンプル間で情報を伝達できるように、マルチスケールの関節表現空間を学習する。
ダイナミクスはその後、進行のもっともらしい軌跡を提供し、SDEは同じ出発点から別の軌跡を提供する。
我々は、ODEの定式化を支援し、高レベルの視覚的特徴、潜在空間の組織、軌道の滑らかさを含む正規化を動機付ける理論的洞察を提供する。
次に、網膜の地理的萎縮、多発性硬化症、グリオ芽腫の進行を示す3つの縦断的医用画像データセットを用いて、画像FlowNetの有効性を実証的に評価した。
関連論文リスト
- Leapfrog Latent Consistency Model (LLCM) for Medical Images Generation [11.61653347709148]
本稿では,MedImgsデータセットに基づく再学習拡散モデルから抽出したLapfrog Latent Consistency Model (LLCM)を提案する。
本モデルは,医用画像の生成における最先端性能を示す。
実験の結果, 犬心X線画像の既存モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-11-22T17:19:58Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACEモデルは、STデータで利用可能な組織像の多様性を調べ、組織像から分子的洞察を抽出する。
モデルは、現代のアルゴリズムと比較して大きな効率性を示し、残余のクロスバリデーションにおいて0.56の相関関係を示す。
論文 参考訳(メタデータ) (2024-08-07T07:12:52Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Building Universal Foundation Models for Medical Image Analysis with
Spatially Adaptive Networks [5.661631789478932]
医用画像解析のための普遍的基礎モデルを提案する。
55の公開医用画像データセット上のマスク画像モデリング(MIM)を用いて、空間適応型視覚トークンーザ(SPAD-VT)と空間適応型視覚変換器(SPAD-ViT)を事前訓練する。
下流の医用画像分類とセグメンテーションタスクの実験結果から,本モデルの性能とラベルの効率が向上したことを示す。
論文 参考訳(メタデータ) (2023-12-12T08:33:45Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
医療画像の深層学習は、大量のトレーニングデータを必要とするため、制限されている。
画像フォレスティング変換を用いて、画像を最適にスーパーピクセルに分割する。
これらのスーパーピクセルはその後、グラフ構造化データに変換され、特徴の巧妙な抽出と関係のモデリングを可能にする。
論文 参考訳(メタデータ) (2023-11-13T13:20:54Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets [0.0]
病理組織学的データセットGAN(HDGAN)は、画像の生成と分割のためのフレームワークであり、大きな解像度の病理組織像によく対応している。
生成したバックボーンの更新,ジェネレータからの遅延特徴の選択的抽出,メモリマップされた配列への切り替えなど,オリジナルのフレームワークからいくつかの適応を行う。
血栓性微小血管症における高分解能タイルデータセット上でHDGANを評価し,高分解能画像アノテーション生成タスクにおいて高い性能を示した。
論文 参考訳(メタデータ) (2022-07-06T14:33:50Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。