論文の概要: Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis
- arxiv url: http://arxiv.org/abs/2406.14856v1
- Date: Fri, 21 Jun 2024 04:02:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:52:36.118984
- Title: Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis
- Title(参考訳): マルチタスクビデオ解析によるパーキンソン病のアクセシブル・ホーム検出
- Authors: Md Saiful Islam, Tariq Adnan, Jan Freyberg, Sangwu Lee, Abdelrahman Abdelkader, Meghan Pawlik, Cathe Schwartz, Karen Jaffe, Ruth B. Schneider, E Ray Dorsey, Ehsan Hoque,
- Abstract要約: 我々は,3つのタスクのウェブカメラ記録を分析し,パーキンソン病(PD)を検出するために,新しいニューラルネットワークベースの融合アーキテクチャを訓練した。
我々は不確実性を考慮して予測精度を向上させるためにモンテカルロ・ドロップアウトを組み込んだ。
提案モデルの精度は,ORC曲線(AUROC)下において有意に向上し,単一タスクモデルと比較して非固有性に対する感度が向上した。
- 参考スコア(独自算出の注目度): 3.1851272788128644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Limited access to neurological care leads to missed diagnoses of Parkinson's disease (PD), leaving many individuals unidentified and untreated. We trained a novel neural network-based fusion architecture to detect Parkinson's disease (PD) by analyzing features extracted from webcam recordings of three tasks: finger tapping, facial expression (smiling), and speech (uttering a sentence containing all letters of the alphabet). Additionally, the model incorporated Monte Carlo Dropout to improve prediction accuracy by considering uncertainties. The study participants (n = 845, 272 with PD) were randomly split into three sets: 60% for training, 20% for model selection (hyper-parameter tuning), and 20% for final performance evaluation. The dataset consists of 1102 sessions, each session containing videos of all three tasks. Our proposed model achieved significantly better accuracy, area under the ROC curve (AUROC), and sensitivity at non-inferior specificity compared to any single-task model. Withholding uncertain predictions further boosted the performance, achieving 88.0% (95% CI: 87.7% - 88.4%) accuracy, 93.0% (92.8% - 93.2%) AUROC, 79.3% (78.4% - 80.2%) sensitivity, and 92.6% (92.3% - 92.8%) specificity, at the expense of not being able to predict for 2.3% (2.0% - 2.6%) data. Further analysis suggests that the trained model does not exhibit any detectable bias across sex and ethnic subgroups and is most effective for individuals aged between 50 and 80. This accessible, low-cost approach requiring only an internet-enabled device with a webcam and microphone paves the way for convenient PD screening at home, particularly in regions with limited access to clinical specialists.
- Abstract(参考訳): 神経学的治療への限られたアクセスはパーキンソン病(PD)の診断を見逃し、多くの個人が未同定で治療を受けていない。
我々は,パーキンソン病(PD)を検出するために,指のタップ,表情(笑顔),発声(アルファベットの全文字を含む文)という3つのタスクのウェブカメラ記録から抽出した特徴を分析し,新しいニューラルネットワークベースの融合アーキテクチャを訓練した。
さらに、モデルは不確実性を考慮して予測精度を向上させるためにモンテカルロ・ドロップアウトを組み込んだ。
被験者 (n = 845, 272 with PD) をランダムに3セットに分け, トレーニングの60%, モデル選択の20% (ハイパーパラメータチューニング) , 最終評価の20%に分けた。
データセットは1102セッションで構成され、各セッションには3つのタスクすべてのビデオが含まれている。
提案モデルの精度は,ORC曲線(AUROC)下において有意に向上し,単一タスクモデルと比較して非固有性に対する感度が向上した。
不確実な予測を控えて、88.0% (95% CI: 87.7% - 88.4%) の精度、93.0% (92.8% - 93.2%) のAUROC、79.3% (78.4% - 80.2%) の感度、92.6% (92.3% - 92.8%) の特異性を達成した。
さらに分析したところ、この訓練されたモデルは性別と民族のサブグループ間で検出可能な偏見を示さず、50歳から80歳までの個人に最も効果的であることが示唆された。
ウェブカメラとマイクロフォンを備えたインターネット対応デバイスのみを必要とするこの安価なアプローチは、特に臨床専門医に限られた地域において、家庭で便利なPDスクリーニングを行うための道を開く。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response [0.0]
2024年のMpoxの流行は、特にアフリカで重篤な1bの出現で、資源制限された環境での診断能力に重大なギャップが浮き彫りになっている。
本研究の目的は、低リソース環境でオフラインで動作するように設計されたMpox用のAI駆動オンデバイススクリーニングツールの開発と評価である。
論文 参考訳(メタデータ) (2024-09-05T11:18:34Z) - PPINtonus: Early Detection of Parkinson's Disease Using Deep-Learning Tonal Analysis [0.0]
PPINtonusはパーキンソン病の早期発見システムである。
深層学習音素解析を用いて、神経学的検査の代替手段を提供する。
論文 参考訳(メタデータ) (2024-06-03T01:07:42Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - Unmasking Parkinson's Disease with Smile: An AI-enabled Screening
Framework [3.673889641081601]
PD患者256名を含む1,059名から,3,871本のビデオを収集した。
顔表情の低下を特徴とするPDの著明な症状である視力低下に関連する特徴を抽出した。
これらの特徴に基づいてトレーニングされたAIモデルのアンサンブルは89.7%の精度に達し、受信者動作特性(AUROC)は89.3%となった。
論文 参考訳(メタデータ) (2023-08-03T18:23:37Z) - Sparse Dynamical Features generation, application to Parkinson's Disease
diagnosis [0.0]
本稿では,脳波の動的,頻度,時間的内容を用いて脳の機能に着想を得た新しいアプローチを提案する。
本手法は,N=50名の被験者を含む3眼球聴覚タスク中に記録された脳波信号を含む公開データセットを用いて評価し,そのうち25名がPDに罹患した。
論文 参考訳(メタデータ) (2022-10-20T22:39:29Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - MOMO -- Deep Learning-driven classification of external DICOM studies
for PACS archivation [0.9498643829295902]
MOMO(Modality Mapping and Orchestration)は、このマッピングプロセスを自動化するためのディープラーニングベースのアプローチである。
既存のラベルを持つ11,934個の画像シリーズが、地元の病院のPACSデータベースから検索され、ニューラルネットワークを訓練した。
MOMOは精度の大きなマージンと予測力(99.29%の予測力、92.71%の精度、2.63%のマイナーエラー)で上回る。
論文 参考訳(メタデータ) (2021-12-01T17:16:41Z) - IA-GCN: Interpretable Attention based Graph Convolutional Network for
Disease prediction [47.999621481852266]
タスクに対する入力特徴の臨床的関連性を解釈する,解釈可能なグラフ学習モデルを提案する。
臨床シナリオでは、そのようなモデルは、臨床専門家が診断および治療計画のためのより良い意思決定を支援することができる。
本研究では,Tadpoleの平均精度が3.2%,UKBBジェンダーが1.6%,UKBB年齢予測タスクが2%と,比較方法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-29T13:04:02Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。