論文の概要: LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
- arxiv url: http://arxiv.org/abs/2406.14917v3
- Date: Mon, 28 Jul 2025 15:37:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 14:15:44.649526
- Title: LLM2TEA: An Agentic AI Designer for Discovery with Generative Evolutionary Multitasking
- Title(参考訳): LLM2TEA: 生成的進化的マルチタスクによる発見のためのエージェントAIデザイナ
- Authors: Melvin Wong, Jiao Liu, Thiago Rios, Stefan Menzel, Yew Soon Ong,
- Abstract要約: 本稿では,生成的進化的マルチタスキング(GEM)を用いたエージェント型AIデザイナについて紹介する。
LLM2TEAは、複数のドメインからのソリューションのクロスブレーディングを可能にし、ディシプリナ境界を越える新しいソリューションを育む。
LLM2TEAは、ターゲットオブジェクトを記述するテキストプロンプトからジェノタイプサンプルを生成するLLMと、対応する表現型を生成するテキストから3D生成モデルと、その意味表現を解釈する分類器と、その物理特性を評価するための計算シミュレータとを備える。
- 参考スコア(独自算出の注目度): 21.237950330178354
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents LLM2TEA, a Large Language Model (LLM) driven MultiTask Evolutionary Algorithm, representing the first agentic AI designer of its kind operating with generative evolutionary multitasking (GEM). LLM2TEA enables the crossbreeding of solutions from multiple domains, fostering novel solutions that transcend disciplinary boundaries. Of particular interest is the ability to discover designs that are both novel and conforming to real-world physical specifications. LLM2TEA comprises an LLM to generate genotype samples from text prompts describing target objects, a text-to-3D generative model to produce corresponding phenotypes, a classifier to interpret its semantic representations, and a computational simulator to assess its physical properties. Novel LLM-based multitask evolutionary operators are introduced to guide the search towards high-performing, practically viable designs. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, showing 97% to 174% improvements in the diversity of novel designs over the current text-to-3D baseline. Moreover, over 73% of the generated designs outperform the top 1% of designs produced by the text-to-3D baseline in terms of physical performance. The designs produced by LLM2TEA are not only aesthetically creative but also functional in real-world contexts. Several of these designs have been successfully 3D printed, demonstrating the ability of our approach to transform AI-generated outputs into tangible, physical designs. These designs underscore the potential of LLM2TEA as a powerful tool for complex design optimization and discovery, capable of producing novel and physically viable designs.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) を駆動するマルチタスク進化アルゴリズム LLM2TEA について述べる。
LLM2TEAは、複数のドメインからのソリューションのクロスブレーディングを可能にし、ディシプリナ境界を越える新しいソリューションを育む。
特に興味深いのは、新しい設計と現実世界の物理的仕様の両方に適合する設計を見つける能力である。
LLM2TEAは、ターゲットオブジェクトを記述するテキストプロンプトからジェノタイプサンプルを生成するLLMと、対応する表現型を生成するテキストから3D生成モデルと、その意味表現を解釈する分類器と、その物理特性を評価するための計算シミュレータとを備える。
LLMに基づく新しいマルチタスク進化演算子を導入し、高性能で実用的な設計への探索を導く。
LLM2TEAの有効性を検証し,従来のテキスト・ツー・3Dベースラインに対する新規設計の多様性を97%から174%改善した。
さらに、生成されたデザインの73%以上は、テキストから3Dのベースラインで作られたデザインの上位1%を物理的性能で上回っている。
LLM2TEAによって作られたデザインは、美的な創造性だけでなく、現実世界の文脈でも機能する。
これらのデザインのいくつかは3Dプリントに成功しており、私たちのアプローチがAI生成した出力を具体的物理的デザインに変換する能力を示している。
これらの設計は、LLM2TEAの複雑な設計最適化と発見のための強力なツールとしての可能性を強調し、新規で物理的に実行可能な設計を作り出すことができる。
関連論文リスト
- Grammar-Guided Evolutionary Search for Discrete Prompt Optimisation [63.97051732013936]
本稿では,2段階からなる離散的な自動最適化に対する進化的探索手法を提案する。
第1段階では、文法誘導型遺伝的プログラミングが実行され、プロンプト生成プログラムを合成する。
第2段階では、局所探索を用いて、最高のパフォーマンスプログラムの周辺を探索する。
論文 参考訳(メタデータ) (2025-07-14T14:34:15Z) - LLM-to-Phy3D: Physically Conform Online 3D Object Generation with LLMs [25.95070778191463]
LLM-to-Phy3Dは、既存のLCM-to-3Dモデルで、その場で適合した3Dオブジェクトを生成できる、物理的に適合したオンライン3Dオブジェクト生成である。
LLM-to-Phy3Dの体系的評価は、車両設計最適化におけるアブレーション研究によって支持され、様々なLCMの改善が4.5%から106.7%向上した。
奨励的な結果は、科学や工学の応用にLLM-to-Phy3Dを物理AIに応用する可能性を示唆している。
論文 参考訳(メタデータ) (2025-06-11T10:06:21Z) - Reinforcing Multimodal Understanding and Generation with Dual Self-rewards [56.08202047680044]
大規模言語モデル(LLM)は、クロスモデル理解と生成を単一のフレームワークに統合する。
現在のソリューションでは、外部の監視(例えば、人間のフィードバックや報酬モデル)が必要であり、一方向のタスクにのみ対処する。
我々は,LMMの理解と生成能力を強化するために,自己監督型二重報酬機構を導入する。
論文 参考訳(メタデータ) (2025-06-09T17:38:45Z) - Cooking Up Creativity: A Cognitively-Inspired Approach for Enhancing LLM Creativity through Structured Representations [53.950760059792614]
大きな言語モデル(LLM)は数え切れないほど多くのタスクで優れていますが、創造性に苦慮しています。
我々は、LLMと構造化表現を結合し、より創造的で多様なアイデアを生み出すために認知的にインスピレーションを与える新しいアプローチを導入する。
我々は、創造的なレシピを生成するモデルであるDishCOVERを用いて、料理分野における我々のアプローチを実証する。
論文 参考訳(メタデータ) (2025-04-29T11:13:06Z) - How Effective are Generative Large Language Models in Performing Requirements Classification? [4.429729688079712]
本研究では,2次および複数クラスの要件分類を行う3つの生成的大規模言語モデル(LLM)の有効性について検討した。
我々の研究は、素早い設計やLLMアーキテクチャといった要因は普遍的に重要であるが、データセットのバリエーションなどの要因は、分類作業の複雑さに応じて、より状況に影響を及ぼすと結論付けている。
論文 参考訳(メタデータ) (2025-04-23T14:41:11Z) - Probing and Inducing Combinational Creativity in Vision-Language Models [52.76981145923602]
VLM(Vision-Language Models)の最近の進歩は、それらのアウトプットが組合せの創造性を反映しているかという議論を引き起こしている。
本稿では,創造的プロセスを3つのレベルに分解するIEIフレームワークを提案する。
このフレームワークを検証するために、IEIフレームワークに従って注釈付けされた666人のアーティストによる視覚マッシュアップの高品質データセットであるCreativeMashupをキュレートする。
論文 参考訳(メタデータ) (2025-04-17T17:38:18Z) - Aligning Large Language Models and Geometric Deep Models for Protein Representation [57.59506688299817]
遅延表現アライメントは、異なるモダリティからの埋め込みを共有空間にマッピングするために使用され、しばしば大きな言語モデル(LLM)の埋め込み空間と一致している。
プリミティブなタンパク質中心の大規模言語モデル (MLLM) が登場したが、それらは表現の至る所で最適なアライメントの実践に関する根本的な理解が欠如しているアプローチに大きく依存している。
本研究では,タンパク質領域におけるLLMと幾何学的深部モデル(GDM)のマルチモーダル表現のアライメントについて検討する。
本研究は, モデルおよびタンパク質の観点からのアライメント要因について検討し, 現行アライメント手法の課題を特定し, アライメントプロセスを改善するための戦略を提案する。
論文 参考訳(メタデータ) (2024-11-08T04:15:08Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond [48.43910061720815]
マルチモーダル生成AIは、学術と産業の両方で注目を集めている。
理解と生成の両方に統一されたモデルを持つことは可能か?
論文 参考訳(メタデータ) (2024-09-23T13:16:09Z) - Benchmarking Language Model Creativity: A Case Study on Code Generation [39.546827184857754]
本研究では,LLMの創造性を定量化するフレームワークを提案する。
生成した創造的応答における収束的思考と発散的思考の両方を定量化する計量であるNEOGAUGEを定義する。
我々はCodeforcesの問題に関する提案されたフレームワークをテストする。これは、タスクをコーディングするための自然なデータセットと、先行する人間のソリューションのコレクションの両方に役立ちます。
論文 参考訳(メタデータ) (2024-07-12T05:55:22Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
LLM(Large Language Models)は、ICL(In-context Learning)機能によってNLPを変換した。
本稿では,予め定義されたタスクのラベル付き例から新しいタスクまで,LLMが一般化できるかどうかを検討する。
LLaMA-2 7Bは107%, LLaMA-2 13Bは18.6%, GPT3.5は3.2%であった。
論文 参考訳(メタデータ) (2024-05-17T05:20:49Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges [50.280704114978384]
事前訓練された大規模言語モデル(LLM)は、自然なテキストを生成する強力な能力を示す。
進化的アルゴリズム(EA)は、複雑な現実世界の問題に対する多様な解決策を発見できる。
論文 参考訳(メタデータ) (2024-01-19T05:58:30Z) - 3DGEN: A GAN-based approach for generating novel 3D models from image
data [5.767281919406463]
本稿では,物体再構成のためのニューラル・ラジアンス・フィールドとGANに基づく画像生成のためのモデルである3DGENを提案する。
提案アーキテクチャでは、トレーニング画像と同じカテゴリのオブジェクトに対して可塑性メッシュを生成し、その結果のメッシュと最先端のベースラインを比較することができる。
論文 参考訳(メタデータ) (2023-12-13T12:24:34Z) - DreamCreature: Crafting Photorealistic Virtual Creatures from
Imagination [140.1641573781066]
ターゲット概念のラベルなしイメージのセットを前提として、我々は、新しいハイブリッド概念を創出できるT2Iモデルをトレーニングすることを目指している。
そこで我々はDreamCreatureと呼ばれる新しい手法を提案し,その基盤となるサブ概念を同定し抽出する。
したがって、T2Iは忠実な構造とフォトリアリスティックな外観を持つ新しい概念を生成するのに適応する。
論文 参考訳(メタデータ) (2023-11-27T01:24:31Z) - Luminate: Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation [19.62178304006683]
現在のインタラクションパラダイムは不足しており、限られたアイデアの集合に対して、ユーザを迅速なコンバージェンスへと導くものだ、と私たちは主張する。
本研究では,ユーザがシームレスに探索し,評価し,多数の応答を合成できる設計空間の構造化を促進するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:53:14Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - Making LLaMA SEE and Draw with SEED Tokenizer [69.1083058794092]
大規模言語モデルにSEEとDrawの能力を持たせるための精巧な画像トークンであるSEEDを紹介します。
SEEDトークンを使うことで、LLMはオリジナルのトレーニングレシピの下でスケーラブルなマルチモーダルオートレグレスを実行することができる。
SEED-LLaMAはマルチターン・イン・コンテクスト・マルチモーダル生成のような合成創発的能力を示す。
論文 参考訳(メタデータ) (2023-10-02T14:03:02Z) - Breathing New Life into 3D Assets with Generative Repainting [74.80184575267106]
拡散ベースのテキスト・ツー・イメージ・モデルは、ビジョン・コミュニティ、アーティスト、コンテンツ・クリエーターから大きな注目を集めた。
近年の研究では、拡散モデルとニューラルネットワークの絡み合いを利用した様々なパイプラインが提案されている。
予備訓練された2次元拡散モデルと標準3次元ニューラルラジアンスフィールドのパワーを独立したスタンドアロンツールとして検討する。
我々のパイプラインはテクスチャ化されたメッシュや無テクスチャのメッシュのような、レガシなレンダリング可能な幾何学を受け入れ、2D生成の洗練と3D整合性強化ツール間の相互作用をオーケストレーションします。
論文 参考訳(メタデータ) (2023-09-15T16:34:51Z) - Large Language and Text-to-3D Models for Engineering Design Optimization [0.1740313383876245]
工学領域における深層テキストから3Dモデルの可能性について検討する。
空力車両最適化の文脈において,OpenAIによるテキスト・ツー・3Dアセット・ネットワークであるShap-Eを用いる。
論文 参考訳(メタデータ) (2023-07-03T07:54:09Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - Investigating GANsformer: A Replication Study of a State-of-the-Art
Image Generation Model [0.0]
我々は、オリジナルのGANネットワークであるGANformerの新たなバリエーションを再現し、評価する。
リソースと時間制限のため、ネットワークのトレーニング時間、データセットタイプ、サイズを制限しなければなりませんでした。
論文 参考訳(メタデータ) (2023-03-15T12:51:16Z) - Challenges in creative generative models for music: a divergence
maximization perspective [3.655021726150369]
創造的な実践における生成機械学習モデルの開発は、芸術家、実践家、パフォーマーの間でより多くの関心を集めている。
ほとんどのモデルは、トレーニングデータセットで定義されたドメインの外にあるコンテンツを生成することができない。
本稿では,ML目的の新しい汎用的な定式化から始まる,新たな予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-16T12:02:43Z) - CreativeGAN: Editing Generative Adversarial Networks for Creative Design
Synthesis [1.933681537640272]
本論文では,新しいデザインを作成するための自動手法であるCreativeGANを提案する。
デザインをユニークなものにするコンポーネントを識別し、GANモデルを変更することで、識別されたユニークなコンポーネントでデザインを生成する可能性が高まる。
自転車デザインのデータセットを用いて,ユニークなフレームとハンドル,および幅広いデザインの珍しいノベルティを備えた新しい自転車デザインを作成できることを実証した。
論文 参考訳(メタデータ) (2021-03-10T18:22:35Z) - MO-PaDGAN: Generating Diverse Designs with Multivariate Performance
Enhancement [13.866787416457454]
深部生成モデルは自動設計合成と設計空間探索に有用であることが証明されている。
1) 生成した設計には多様性が欠けていること,2) 生成した設計のすべての性能指標を明示的に改善することが困難であること,3) 既存のモデルは一般に高性能な新規設計を生成できないこと,の3つの課題に直面する。
多様性と性能の確率的モデリングのための新しい決定点プロセスに基づく損失関数を含むMO-PaDGANを提案する。
論文 参考訳(メタデータ) (2020-07-07T21:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。