論文の概要: NeuralSCF: Neural network self-consistent fields for density functional theory
- arxiv url: http://arxiv.org/abs/2406.15873v1
- Date: Sat, 22 Jun 2024 15:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:03:15.676801
- Title: NeuralSCF: Neural network self-consistent fields for density functional theory
- Title(参考訳): NeuralSCF:密度汎関数理論のためのニューラルネットワーク自己整合体
- Authors: Feitong Song, Ji Feng,
- Abstract要約: コーンシャム密度汎関数理論(KS-DFT)は、正確な電子構造計算に広く応用されている。
深層学習の目的としてコーン・シャム密度マップを確立するニューラルネットワーク自己整合体(NeuralSCF)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.7667864049272723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kohn-Sham density functional theory (KS-DFT) has found widespread application in accurate electronic structure calculations. However, it can be computationally demanding especially for large-scale simulations, motivating recent efforts toward its machine-learning (ML) acceleration. We propose a neural network self-consistent fields (NeuralSCF) framework that establishes the Kohn-Sham density map as a deep learning objective, which encodes the mechanics of the Kohn-Sham equations. Modeling this map with an SE(3)-equivariant graph transformer, NeuralSCF emulates the Kohn-Sham self-consistent iterations to obtain electron densities, from which other properties can be derived. NeuralSCF achieves state-of-the-art accuracy in electron density prediction and derived properties, featuring exceptional zero-shot generalization to a remarkable range of out-of-distribution systems. NeuralSCF reveals that learning from KS-DFT's intrinsic mechanics significantly enhances the model's accuracy and transferability, offering a promising stepping stone for accelerating electronic structure calculations through mechanics learning.
- Abstract(参考訳): コーンシャム密度汎関数理論(KS-DFT)は、正確な電子構造計算に広く応用されている。
しかし、特に大規模シミュレーションには計算的に要求される可能性があり、機械学習(ML)アクセラレーションへの最近の取り組みを動機付けている。
我々は,コーン・シャム密度マップを深層学習目的として確立し,コーン・シャム方程式の力学を符号化するニューラルネットワーク自己整合体(NeuralSCF)フレームワークを提案する。
SE(3)-同変グラフ変換器を用いてこの写像をモデル化し、NeuralSCFはコーン=シャムの自己整合反復をエミュレートして電子密度を得る。
ニューラルSCFは電子密度予測と導出特性の最先端の精度を達成し、例外的なゼロショットの一般化を特徴とする。
NeuralSCFは、KS-DFTの内在力学からの学習がモデルの精度と伝達性を大幅に向上させ、メカニックラーニングを通じて電子構造計算を加速させる有望なステップストーンを提供することを明らかにした。
関連論文リスト
- Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNetは、分子二次格子上の量の予測に適応した点畳み込みに基づく、同変のディープニューラルネットワークアーキテクチャである。
初めて、学習された関数の化学的精度は、小さな分子の入力密度とジオメトリーによって達成される。
論文 参考訳(メタデータ) (2023-05-08T17:43:31Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
コーンシャム密度汎関数論(KS-DFT)を解くための深層学習手法を提案する。
このような手法はSCF法と同じ表現性を持つが,計算複雑性は低下する。
さらに,本手法により,より複雑なニューラルベース波動関数の探索が可能となった。
論文 参考訳(メタデータ) (2023-03-01T10:38:10Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - Deep-Learning Density Functional Theory Hamiltonian for Efficient ab
initio Electronic-Structure Calculation [13.271547916205675]
結晶材料のDFTハミルトニアン(ディープH)を表現するためのディープニューラルネットワーク手法を開発した。
この方法はDFTの精度効率ジレンマに対する解決策を提供し、大規模材料システムを探究する機会を開放する。
論文 参考訳(メタデータ) (2021-04-08T14:08:10Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFTは原子周辺の電子電荷密度を予測するためのディープラーニングモデルである。
モデルの精度とスケーラビリティは、分子、固体、液体に対して実証される。
論文 参考訳(メタデータ) (2020-11-04T16:56:08Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
本稿では,コーン・シャム密度汎関数理論(DFT)による全エネルギーを有限電子温度で再現する機械学習(ML)に基づく数値モデリングワークフローを提案する。
ディープニューラルネットワークに基づいて、ワークフローは与えられた原子構成に対する状態の局所密度(LDOS)を生成する。
本研究では, 固体および液体金属に対するこのアプローチの有効性を実証し, 固体および液体アルミニウムの独立学習モデルと統一学習モデルの比較を行った。
論文 参考訳(メタデータ) (2020-10-10T05:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。