論文の概要: Dancing in the syntax forest: fast, accurate and explainable sentiment analysis with SALSA
- arxiv url: http://arxiv.org/abs/2406.16071v1
- Date: Sun, 23 Jun 2024 10:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:13:57.660434
- Title: Dancing in the syntax forest: fast, accurate and explainable sentiment analysis with SALSA
- Title(参考訳): 構文林でのダンス--SALSAを用いた高速・高精度・説明可能な感情分析
- Authors: Carlos Gómez-Rodríguez, Muhammad Imran, David Vilares, Elena Solera, Olga Kellert,
- Abstract要約: SALSAは、最近開発された高速構文解析技術を活用して、軽量で効率的な感情分析システムを構築することを目的としている。
当社のアプローチは、中小企業が本番で使うことに関心のある作業プロダクトのバックボーンとなることを目的としています。
- 参考スコア(独自算出の注目度): 17.295633196950114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis is a key technology for companies and institutions to gauge public opinion on products, services or events. However, for large-scale sentiment analysis to be accessible to entities with modest computational resources, it needs to be performed in a resource-efficient way. While some efficient sentiment analysis systems exist, they tend to apply shallow heuristics, which do not take into account syntactic phenomena that can radically change sentiment. Conversely, alternatives that take syntax into account are computationally expensive. The SALSA project, funded by the European Research Council under a Proof-of-Concept Grant, aims to leverage recently-developed fast syntactic parsing techniques to build sentiment analysis systems that are lightweight and efficient, while still providing accuracy and explainability through the explicit use of syntax. We intend our approaches to be the backbone of a working product of interest for SMEs to use in production.
- Abstract(参考訳): センチメント分析は、企業や機関が製品やサービス、イベントに関する世論を測る上で重要な技術である。
しかし、大規模な感情分析が控えめな計算資源を持つエンティティにアクセスできるためには、リソース効率のよい方法で行う必要がある。
いくつかの効率的な感情分析システムが存在するが、彼らは浅いヒューリスティックスを適用する傾向にあり、それは感情を根本的に変えうる統語的現象を考慮していない。
逆に、構文を考慮に入れた代替案は計算コストがかかる。
SALSAプロジェクトは、欧州研究評議会がProof-of-Concept Grantの下で資金提供し、最近開発された高速構文解析技術を活用して、軽量で効率的な感情分析システムを構築することを目的としている。
当社のアプローチは、中小企業が本番で使うことに関心のある作業プロダクトのバックボーンとなることを目的としています。
関連論文リスト
- RVISA: Reasoning and Verification for Implicit Sentiment Analysis [18.836998294161834]
暗黙の感情分析(ISA)は、表現に有能なキュー語が欠如していることで大きな課題となる。
本研究では,DO LLMの生成能力とED LLMの推論能力を利用した2段階推論フレームワークであるRVISAを提案する。
論文 参考訳(メタデータ) (2024-07-02T15:07:54Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Explainable Authorship Identification in Cultural Heritage Applications:
Analysis of a New Perspective [48.031678295495574]
既存の汎用eXplainable Artificial Intelligence(XAI)技術のAIへの応用について検討する。
特に,3種類のAIdタスクにおける3種類のXAIテクニックの相対的メリットを評価した。
我々の分析によると、これらの技術は、説明可能なオーサシップの特定に向けて重要な第一歩を踏み出すが、まだ多くの作業が続けられている。
論文 参考訳(メタデータ) (2023-11-03T20:51:15Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
感情分析の標準的なパラダイムは、単一のLCMに依存して、その決定を1ラウンドで行うことである。
本稿では,感情分析のためのマルチLLMネゴシエーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-03T12:35:29Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
本稿では,これらの問題に対処する簡易かつ効果的な命令チューニング手法を提案する。
実験では, 最先端の教師付き感情分析モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-22T03:56:38Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple
Analysis [84.80347062834517]
本稿では,対話における目標視差感の4倍を検出することを目的としたDiaASQを紹介する。
中国語と英語の両方で大規模なDiaASQデータセットを手作業で構築する。
我々は、タスクをベンチマークするニューラルネットワークを開発し、エンドツーエンドの4倍の予測を効果的に実行する。
論文 参考訳(メタデータ) (2022-11-10T17:18:20Z) - Causal Intervention Improves Implicit Sentiment Analysis [67.43379729099121]
インスツルメンタル・バリアブル(ISAIV)を用いたインシシット・センシティメント分析のための因果介入モデルを提案する。
まず、因果的視点から感情分析をレビューし、このタスクに存在する共同設立者を分析する。
そこで本研究では,文章と感情の因果関係を解消し,純粋因果関係を抽出するインストゥルメンタル変数を提案する。
論文 参考訳(メタデータ) (2022-08-19T13:17:57Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA)は、感情分析の分野におけるきめ細かいタスクである。
アスペクトベース感性分析問題を解決するための最近のDeBERTaモデル
論文 参考訳(メタデータ) (2022-07-06T03:50:31Z) - A Comparative Study of Sentiment Analysis Using NLP and Different
Machine Learning Techniques on US Airline Twitter Data [0.0]
知覚分析は自然言語処理(NLP)と機械学習(ML)の技法である
本稿では,2つのNLP手法(Bag-of-WordsとTF-IDF)と各種ML分類アルゴリズムを提案する。
ベストアプローチは,Bag-of-Words技術を用いたSupport Vector MachineとLogistic Regressionを用いた77%の精度を提供する。
論文 参考訳(メタデータ) (2021-10-02T18:05:00Z) - A BERT based Sentiment Analysis and Key Entity Detection Approach for
Online Financial Texts [4.834766555659253]
本稿では,オンライン金融テキストマイニングとソーシャルメディアにおける世論分析に応用した,BERTに基づく感情分析とキーエンティティ検出手法を提案する。
実験の結果,SVM,LR,NBM,BERTの2つの財務感情分析とキーエンティティ検出データセットにおいて,本手法の性能は概して高いことがわかった。
論文 参考訳(メタデータ) (2020-01-14T13:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。