論文の概要: Dancing in the syntax forest: fast, accurate and explainable sentiment analysis with SALSA
- arxiv url: http://arxiv.org/abs/2406.16071v1
- Date: Sun, 23 Jun 2024 10:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:13:57.660434
- Title: Dancing in the syntax forest: fast, accurate and explainable sentiment analysis with SALSA
- Title(参考訳): 構文林でのダンス--SALSAを用いた高速・高精度・説明可能な感情分析
- Authors: Carlos Gómez-Rodríguez, Muhammad Imran, David Vilares, Elena Solera, Olga Kellert,
- Abstract要約: SALSAは、最近開発された高速構文解析技術を活用して、軽量で効率的な感情分析システムを構築することを目的としている。
当社のアプローチは、中小企業が本番で使うことに関心のある作業プロダクトのバックボーンとなることを目的としています。
- 参考スコア(独自算出の注目度): 17.295633196950114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis is a key technology for companies and institutions to gauge public opinion on products, services or events. However, for large-scale sentiment analysis to be accessible to entities with modest computational resources, it needs to be performed in a resource-efficient way. While some efficient sentiment analysis systems exist, they tend to apply shallow heuristics, which do not take into account syntactic phenomena that can radically change sentiment. Conversely, alternatives that take syntax into account are computationally expensive. The SALSA project, funded by the European Research Council under a Proof-of-Concept Grant, aims to leverage recently-developed fast syntactic parsing techniques to build sentiment analysis systems that are lightweight and efficient, while still providing accuracy and explainability through the explicit use of syntax. We intend our approaches to be the backbone of a working product of interest for SMEs to use in production.
- Abstract(参考訳): センチメント分析は、企業や機関が製品やサービス、イベントに関する世論を測る上で重要な技術である。
しかし、大規模な感情分析が控えめな計算資源を持つエンティティにアクセスできるためには、リソース効率のよい方法で行う必要がある。
いくつかの効率的な感情分析システムが存在するが、彼らは浅いヒューリスティックスを適用する傾向にあり、それは感情を根本的に変えうる統語的現象を考慮していない。
逆に、構文を考慮に入れた代替案は計算コストがかかる。
SALSAプロジェクトは、欧州研究評議会がProof-of-Concept Grantの下で資金提供し、最近開発された高速構文解析技術を活用して、軽量で効率的な感情分析システムを構築することを目的としている。
当社のアプローチは、中小企業が本番で使うことに関心のある作業プロダクトのバックボーンとなることを目的としています。
関連論文リスト
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
本稿では、エクイティリサーチに特化したAIエージェントフレームワークであるFinRobotについて述べる。
FinRobotはマルチエージェント・チェーン・オブ・シント(CoT)システムを採用し、定量分析と定性的分析を統合し、人間のアナリストの包括的な推論をエミュレートする。
CapitalCubeやWright Reportsのような既存の自動研究ツールとは異なり、FinRobotは大手ブローカー会社や基礎研究ベンダーと同等の洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T17:38:07Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - RVISA: Reasoning and Verification for Implicit Sentiment Analysis [18.836998294161834]
暗黙の感情分析(ISA)は、表現に有能なキュー語が欠如していることで大きな課題となる。
本研究では,DO LLMの生成能力とED LLMの推論能力を利用した2段階推論フレームワークであるRVISAを提案する。
論文 参考訳(メタデータ) (2024-07-02T15:07:54Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
感情分析の標準的なパラダイムは、単一のLCMに依存して、その決定を1ラウンドで行うことである。
本稿では,感情分析のためのマルチLLMネゴシエーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-03T12:35:29Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
本稿では,これらの問題に対処する簡易かつ効果的な命令チューニング手法を提案する。
実験では, 最先端の教師付き感情分析モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-22T03:56:38Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - DiaASQ : A Benchmark of Conversational Aspect-based Sentiment Quadruple
Analysis [84.80347062834517]
本稿では,対話における目標視差感の4倍を検出することを目的としたDiaASQを紹介する。
中国語と英語の両方で大規模なDiaASQデータセットを手作業で構築する。
我々は、タスクをベンチマークするニューラルネットワークを開発し、エンドツーエンドの4倍の予測を効果的に実行する。
論文 参考訳(メタデータ) (2022-11-10T17:18:20Z) - A Comparative Study of Sentiment Analysis Using NLP and Different
Machine Learning Techniques on US Airline Twitter Data [0.0]
知覚分析は自然言語処理(NLP)と機械学習(ML)の技法である
本稿では,2つのNLP手法(Bag-of-WordsとTF-IDF)と各種ML分類アルゴリズムを提案する。
ベストアプローチは,Bag-of-Words技術を用いたSupport Vector MachineとLogistic Regressionを用いた77%の精度を提供する。
論文 参考訳(メタデータ) (2021-10-02T18:05:00Z) - A BERT based Sentiment Analysis and Key Entity Detection Approach for
Online Financial Texts [4.834766555659253]
本稿では,オンライン金融テキストマイニングとソーシャルメディアにおける世論分析に応用した,BERTに基づく感情分析とキーエンティティ検出手法を提案する。
実験の結果,SVM,LR,NBM,BERTの2つの財務感情分析とキーエンティティ検出データセットにおいて,本手法の性能は概して高いことがわかった。
論文 参考訳(メタデータ) (2020-01-14T13:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。