From Text to Test: AI-Generated Control Software for Materials Science Instruments
- URL: http://arxiv.org/abs/2406.16224v2
- Date: Tue, 25 Jun 2024 11:34:15 GMT
- Title: From Text to Test: AI-Generated Control Software for Materials Science Instruments
- Authors: Davi M FĂ©bba, Kingsley Egbo, William A. Callahan, Andriy Zakutayev,
- Abstract summary: Large language models (LLMs) are transforming the landscape of chemistry and materials science.
Here, we demonstrate the rapid deployment of a Python-based control module for a Keithley 2400 electrical source measure unit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. Despite these advancements, their application is constrained to labs with automated instruments and control software, leaving much of materials science reliant on manual processes. Here, we demonstrate the rapid deployment of a Python-based control module for a Keithley 2400 electrical source measure unit using ChatGPT-4. Through iterative refinement, we achieved effective instrument management with minimal human intervention. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing, and parameterizing IV data from a Pt/Cr$_2$O$_3$:Mg/$\beta$-Ga$_2$O$_3$ heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path for further acceleration in materials science.
Related papers
- ToolFlow: Boosting LLM Tool-Calling Through Natural and Coherent Dialogue Synthesis [80.34000499166648]
We propose a Graph-based Sampling strategy to sample more relevant tool combinations, and a Planned-generation strategy to create plans that guide the synthesis of coherent dialogues.
We apply SFT on LLaMA-3.1-8B using 8,000 synthetic dialogues generated with ToolFlow.
Results show that the model achieves tool-calling performance comparable to or even surpassing GPT-4, while maintaining strong general capabilities.
arXiv Detail & Related papers (2024-10-24T05:45:04Z) - Validation of the Scientific Literature via Chemputation Augmented by Large Language Models [0.0]
Chemputation is the process of programming chemical robots to do experiments using a universal symbolic language, but the literature can be error prone and hard to read due to ambiguities.
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including natural language processing, robotic control, and more recently, chemistry.
We introduce an LLM-based chemical research agent workflow designed for the automatic validation of synthetic literature procedures.
arXiv Detail & Related papers (2024-10-08T21:31:42Z) - SeqMate: A Novel Large Language Model Pipeline for Automating RNA Sequencing [0.0]
SeqMate is a tool that allows for one-click analytics by utilizing the power of a large language model (LLM) to automate both data preparation and analysis.
By utilizing the power of generative AI, SeqMate is also capable of analyzing such findings and producing written reports of upregulated/downregulated/user-prompted genes.
arXiv Detail & Related papers (2024-07-02T20:28:30Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Meent: Differentiable Electromagnetic Simulator for Machine Learning [0.6902278820907753]
Electromagnetic (EM) simulation plays a crucial role in analyzing and designing devices with sub-wavelength scale structures.
Meent is an EM simulation software that employs rigorous coupled-wave analysis (RCWA)
We present three applications of Meent: 1) generating a dataset for training neural operator, 2) serving as an environment for the reinforcement learning of nanophotonic device optimization, and 3) providing a solution for inverse problems with gradient-based gradients.
arXiv Detail & Related papers (2024-06-11T10:00:06Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - TLControl: Trajectory and Language Control for Human Motion Synthesis [68.09806223962323]
We present TLControl, a novel method for realistic human motion synthesis.
It incorporates both low-level Trajectory and high-level Language semantics controls.
It is practical for interactive and high-quality animation generation.
arXiv Detail & Related papers (2023-11-28T18:54:16Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
We discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics.
We demonstrate how a centralized controller, informed by machine learning combining limited $a$ $priori$ knowledge and task-based discrimination, can drive on-the-fly experimental decision-making.
arXiv Detail & Related papers (2021-09-30T00:25:35Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.