論文の概要: Learning in Wilson-Cowan model for metapopulation
- arxiv url: http://arxiv.org/abs/2406.16453v1
- Date: Mon, 24 Jun 2024 08:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:33:48.962773
- Title: Learning in Wilson-Cowan model for metapopulation
- Title(参考訳): メタポピュレーションのためのWilson-Cowanモデルでの学習
- Authors: Raffaele Marino, Lorenzo Buffoni, Lorenzo Chicchi, Francesca Di Patti, Diego Febbe, Lorenzo Giambagli, Duccio Fanelli,
- Abstract要約: メタポピュレーションのためのWilson-Cowanモデルは、脳の異なる皮質下領域を連結ノードとして扱う。
このようなメタポピュレーションモデルのダイナミクスに安定したアトラクタを組み込むことで、高い画像とテキストの分類精度を達成できる学習アルゴリズムに変換する。
- 参考スコア(独自算出の注目度): 0.8795040582681393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Wilson-Cowan model for metapopulation, a Neural Mass Network Model, treats different subcortical regions of the brain as connected nodes, with connections representing various types of structural, functional, or effective neuronal connectivity between these regions. Each region comprises interacting populations of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan model. By incorporating stable attractors into such a metapopulation model's dynamics, we transform it into a learning algorithm capable of achieving high image and text classification accuracy. We test it on MNIST and Fashion MNIST, in combination with convolutional neural networks, on CIFAR-10 and TF-FLOWERS, and, in combination with a transformer architecture (BERT), on IMDB, always showing high classification accuracy. These numerical evaluations illustrate that minimal modifications to the Wilson-Cowan model for metapopulation can reveal unique and previously unobserved dynamics.
- Abstract(参考訳): 神経質量ネットワークモデル(英語版)であるウィルソン=コーワンモデル(Wilson-Cowan model for metapopulation)は、脳の様々な皮質下領域を接続ノードとして扱う。
各領域は、標準のWilson-Cowanモデルと一致する興奮性および抑制性の細胞の相互作用する集団から構成される。
このようなメタポピュレーションモデルのダイナミクスに安定したアトラクタを組み込むことで、高い画像とテキストの分類精度を達成できる学習アルゴリズムに変換する。
我々は、MNISTとFashion MNISTで、畳み込みニューラルネットワークと組み合わせて、CIFAR-10とTF-FLOWERSで、IMDBで変換器アーキテクチャ(BERT)と組み合わせて、常に高い分類精度を示す。
これらの数値的な評価は、メタポピュレーションのためのウィルソン・コーワンモデルへの最小限の変更は、ユニークで以前は観測されなかったダイナミクスを明らかにすることができることを示している。
関連論文リスト
- Inferring Population Dynamics in Macaque Cortex [0.0]
我々は、リカレントニューラルネットワーク(RNN)に基づくシンプルで汎用的なアーキテクチャが、より多くの"bespoke"モデルより優れていることを示す。
我々は、RNNが課す自己回帰バイアスが最高レベルのパフォーマンスを達成するために重要であると論じる。
論文 参考訳(メタデータ) (2023-04-05T14:24:27Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
ディープニューラルネットワークの解釈における中核的な課題は、同じタスクのためにトレーニングされた異なるネットワークによって実装された基盤となるアルゴリズム間の共通点を特定することである。
この問題に触発されたDYNAMOは,各点がニューラルネットワークモデルに対応する低次元多様体を構築するアルゴリズムであり,対応するニューラルネットワークが同様のハイレベルな計算処理を実行する場合,その近傍に2つの点が存在する。
DYNAMOは、事前訓練されたニューラルネットワークのコレクションを入力として、隠された状態のダイナミクスとコレクション内の任意のモデルの出力をエミュレートするメタモデルを出力する。
論文 参考訳(メタデータ) (2023-02-27T19:00:05Z) - Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks [6.389882065284252]
本稿では,異種局所モデルのニューロン同士が相互に干渉するニューロン乱れ現象を明らかにする。
本稿では,ニューラルネットワークの乱れを排除し,AMSと呼ばれる局所モデルを適応的に選択して予測を行う実験手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T06:47:48Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
システム神経科学は、単一ニューロンのチューニング曲線と集団活動の分析を特徴とする2つの相補的な神経データ観に依存している。
これらの2つの視点は、潜伏変数とニューラルアクティビティの関係を制約するニューラル潜伏変数モデルにおいてエレガントに結合する。
ニューラルチューニング曲線にまたがる機能共有を提案し、性能を大幅に改善し、より良い最適化を実現する。
論文 参考訳(メタデータ) (2022-10-06T18:37:49Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。