論文の概要: European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
- arxiv url: http://arxiv.org/abs/2406.17826v1
- Date: Tue, 25 Jun 2024 13:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 17:36:24.617536
- Title: European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
- Title(参考訳): 欧州宇宙機関による衛星テレメトリの異常検出基準
- Authors: Krzysztof Kotowski, Christoph Haskamp, Jacek Andrzejewski, Bogdan Ruszczak, Jakub Nalepa, Daniel Lakey, Peter Collins, Aybike Kolmas, Mauro Bartesaghi, Jose Martinez-Heras, Gabriele De Canio,
- Abstract要約: 欧州宇宙機関の衛星テレメトリにおける異常検出ベンチマーク(ESA-ADB)は、この領域に新しい標準を確立することを目的としている。
新たに導入されたESA異常データセットには、3つのESAミッションからの注釈付き実生活テレメトリが含まれている。
新しい階層的評価パイプラインで評価された典型的な異常検出アルゴリズムの結果は、演算子のニーズに対処するために新しいアプローチが必要であることを示している。
- 参考スコア(独自算出の注目度): 2.0880207832785436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has vast potential to improve anomaly detection in satellite telemetry which is a crucial task for spacecraft operations. This potential is currently hampered by a lack of comprehensible benchmarks for multivariate time series anomaly detection, especially for the challenging case of satellite telemetry. The European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB) aims to address this challenge and establish a new standard in the domain. It is a result of close cooperation between spacecraft operations engineers from the European Space Agency (ESA) and machine learning experts. The newly introduced ESA Anomalies Dataset contains annotated real-life telemetry from three different ESA missions, out of which two are included in ESA-ADB. Results of typical anomaly detection algorithms assessed in our novel hierarchical evaluation pipeline show that new approaches are necessary to address operators' needs. All elements of ESA-ADB are publicly available to ensure its full reproducibility.
- Abstract(参考訳): 機械学習は、宇宙船の運用において重要なタスクである衛星テレメトリーにおける異常検出を改善する大きな可能性を秘めている。
このポテンシャルは、特に衛星テレメトリの難易度において、多変量時系列異常検出のための理解可能なベンチマークの欠如によって、現在妨げられている。
欧州宇宙機関の衛星テレメトリにおける異常検出ベンチマーク(ESA-ADB)は、この課題に対処し、領域に新しい標準を確立することを目的としている。
これは欧州宇宙機関(ESA)の宇宙船操作技術者と機械学習の専門家の緊密な協力の結果である。
新たに導入されたESA異常データセットには、ESA-ADBに含まれる3つのESAミッションからの注釈付き実生活テレメトリが含まれている。
新しい階層的評価パイプラインで評価された典型的な異常検出アルゴリズムの結果は、演算子のニーズに対処するために新しいアプローチが必要であることを示している。
ESA-ADBのすべての要素は、その完全な再現性を保証するために公開されている。
関連論文リスト
- The OPS-SAT benchmark for detecting anomalies in satellite telemetry [8.851378726587487]
OPS-SATで取得したテレメトリデータを含むAI-Readyベンチマークデータセット(OPSSAT-AD)を紹介する。
OPSSAT-ADは、異常検出のための30の教師付き、教師なしの古典的および深層機械学習アルゴリズムを用いて得られるベースライン結果に付随する。
論文 参考訳(メタデータ) (2024-06-29T11:12:22Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - SpaceQA: Answering Questions about the Design of Space Missions and
Space Craft Concepts [57.012600276711005]
宇宙ミッション設計における最初のオープンドメインQAシステムであるSpaceQAについて述べる。
SpaceQAは、欧州宇宙機関(ESA)による、宇宙ミッションの設計に関する情報のアクセス、共有、再利用を容易にするイニシアチブの一部である。
論文 参考訳(メタデータ) (2022-10-07T09:41:39Z) - Multi-strip observation scheduling problem for ac-tive-imaging agile
earth observation satellites [0.0]
能動画像型地球観測衛星(MOSP)のマルチストリップ観測スケジューリング問題について検討する。
適応的大近傍探索アルゴリズム (ALNS) と非支配的ソート遺伝的アルゴリズム (NSGA-II) の組合せ力を統合した適応的二目的メメティクスアルゴリズムとともに、二目的最適化モデルを示す。
我々のモデルは既存のモデルよりも多用途であり、応用問題解決の能力を高める。
論文 参考訳(メタデータ) (2022-07-04T08:35:57Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z) - PAST-AI: Physical-layer Authentication of Satellite Transmitters via
Deep Learning [4.588028371034406]
PAST-AIは、低地球軌道(LEO)衛星をIQサンプルの指紋認証によって認証する手法である。
我々は,CNNとオートエンコーダが,衛星トランスデューサの認証に有効であることを証明する。
論文 参考訳(メタデータ) (2020-10-12T06:08:11Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - Agile Earth observation satellite scheduling over 20 years:
formulations, methods and future directions [69.47531199609593]
高度姿勢操作能力を持つアジャイル衛星は、新世代の地球観測衛星(EOS)である
衛星技術の継続的な改善と打ち上げコストの削減により、アジャイルEOS(AEOS)の開発が加速した。
論文 参考訳(メタデータ) (2020-03-13T09:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。