論文の概要: Innovating for Tomorrow: The Convergence of SE and Green AI
- arxiv url: http://arxiv.org/abs/2406.18142v1
- Date: Wed, 26 Jun 2024 07:47:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:18:49.876428
- Title: Innovating for Tomorrow: The Convergence of SE and Green AI
- Title(参考訳): 明日のイノベーション - SEとグリーンAIの収束
- Authors: Luís Cruz, Xavier Franch Gutierrez, Silverio Martínez-Fernández,
- Abstract要約: 機械学習は、既存のソフトウェアエンジニアリングプロセスのフロンティアを変えつつある。
我々は、環境に優しいプラクティスを採用してAI対応のソフトウェアシステムを構築することの影響を反映する。
- 参考スコア(独自算出の注目度): 2.013374581642707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest advancements in machine learning, specifically in foundation models, are revolutionizing the frontiers of existing software engineering (SE) processes. This is a bi-directional phenomona, where 1) software systems are now challenged to provide AI-enabled features to their users, and 2) AI is used to automate tasks within the software development lifecycle. In an era where sustainability is a pressing societal concern, our community needs to adopt a long-term plan enabling a conscious transformation that aligns with environmental sustainability values. In this paper, we reflect on the impact of adopting environmentally friendly practices to create AI-enabled software systems and make considerations on the environmental impact of using foundation models for software development.
- Abstract(参考訳): 機械学習の最新の進歩は、特に基礎モデルにおいて、既存のソフトウェアエンジニアリング(SE)プロセスのフロンティアに革命をもたらしている。
これは双方向の表現モナであり、そこでは
1) ソフトウェアシステムは、ユーザに対してAI対応機能を提供することが課題となっている。
2) AIは、ソフトウェア開発ライフサイクル内のタスクを自動化するために使われます。
持続可能性が社会的懸念の強い時代において、我々のコミュニティは、環境の持続可能性の値に一致した意識的な変革を可能にする長期的な計画を採用する必要がある。
本稿では,AI可能なソフトウェアシステムを構築する上で,環境に優しいプラクティスを採用することの影響を考察し,基礎モデルを用いたソフトウェア開発の環境への影響について考察する。
関連論文リスト
- Overview of Current Challenges in Multi-Architecture Software Engineering and a Vision for the Future [0.0]
提示されたシステムアーキテクチャは、動的な知識グラフベースのWebAssembly Twinsの概念に基づいている。
結果として得られるシステムは、エンドユーザによる完全な透明性とコントロール性を備えた、高度な自律能力を持つことになる。
論文 参考訳(メタデータ) (2024-10-28T13:03:09Z) - The Future of Software Engineering in an AI-Driven World [4.915744683251151]
今後5年間では、人間開発者とAIの共生的なパートナーシップが増加するだろう。
私たちは、AI駆動の世界におけるソフトウェア開発の未来に関するビジョンを示し、このビジョンを実現するために研究コミュニティが取り組むべき重要な課題を探求します。
論文 参考訳(メタデータ) (2024-06-11T21:46:19Z) - Towards Green AI: Current status and future research [0.3749861135832072]
我々は、環境アセスメントとAIシステムのコードデザインの両方に対するアプローチの現状を調査することで、グリーンAIに関する言論を広げることを目指している。
我々は、関連する計算ハードウェアの炭素フットプリントを例示的に推定し、グリーンAIの手法をさらに調査する必要性を強調する。
AIを活用することで、AI4greenAIという独自の環境課題を軽減できると考えています。
論文 参考訳(メタデータ) (2024-05-01T08:10:01Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
本稿では,明日の生態学的課題に対応するエネルギー消費技術のパラドックスについて述べる。
これは、ユースケースや具体的な例を示すために、グリーンプレイヤー向けのAIから多くの例を引き合いに出している。
環境の次元は、AIの幅広い倫理的問題の一部であり、長期的にAIの持続可能性を保証するために不可欠である。
論文 参考訳(メタデータ) (2022-12-22T14:31:48Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Agility in Software 2.0 -- Notebook Interfaces and MLOps with Buttresses
and Rebars [9.327920030279586]
本稿では,機械学習開発の基本となる2つの現代的発展現象について論じる。
まず、統合開発環境への容易な移行をサポートすることにより、ノートブックにおける作業の本質的な弱点を解消できるソリューションを提案する。
第2に、MLOpsコンテキストにメタファ的な執着と残響を導入することで、AIシステムの強化エンジニアリングを提案する。
論文 参考訳(メタデータ) (2021-11-28T13:40:30Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。