論文の概要: Towards Green AI: Current status and future research
- arxiv url: http://arxiv.org/abs/2407.10237v1
- Date: Wed, 1 May 2024 08:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:59:07.456563
- Title: Towards Green AI: Current status and future research
- Title(参考訳): グリーンAIに向けて:現状と今後の研究
- Authors: Christian Clemm, Lutz Stobbe, Kishan Wimalawarne, Jan Druschke,
- Abstract要約: 我々は、環境アセスメントとAIシステムのコードデザインの両方に対するアプローチの現状を調査することで、グリーンAIに関する言論を広げることを目指している。
我々は、関連する計算ハードウェアの炭素フットプリントを例示的に推定し、グリーンAIの手法をさらに調査する必要性を強調する。
AIを活用することで、AI4greenAIという独自の環境課題を軽減できると考えています。
- 参考スコア(独自算出の注目度): 0.3749861135832072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The immense technological progress in artificial intelligence research and applications is increasingly drawing attention to the environmental sustainability of such systems, a field that has been termed Green AI. With this contribution we aim to broaden the discourse on Green AI by investigating the current status of approaches to both environmental assessment and ecodesign of AI systems. We propose a life-cycle-based system thinking approach that accounts for the four key elements of these software-hardware-systems: model, data, server, and cloud. We conduct an exemplary estimation of the carbon footprint of relevant compute hardware and highlight the need to further investigate methods for Green AI and ways to facilitate wide-spread adoption of its principles. We envision that AI could be leveraged to mitigate its own environmental challenges, which we denote as AI4greenAI.
- Abstract(参考訳): 人工知能の研究や応用における技術進歩は、グリーンAIと呼ばれる分野であるこのようなシステムの環境持続可能性に注目が集まっている。
この貢献により、環境アセスメントとAIシステムのコードデザインの両方に対するアプローチの現状を調査することで、グリーンAIに関する言論を広げることを目指している。
本稿では,これらのソフトウェア・ハードウエア・システムの4つの要素(モデル,データ,サーバ,クラウド)を考慮に入れたライフサイクルベースのシステム思考手法を提案する。
我々は、関連する計算ハードウェアの炭素フットプリントを例示的に推定し、グリーンAIの手法と、その原理を広く採用するための方法をさらに調査する必要があることを強調する。
AIを活用することで、AI4greenAIという独自の環境課題を軽減できると考えています。
関連論文リスト
- Innovating for Tomorrow: The Convergence of SE and Green AI [2.013374581642707]
機械学習は、既存のソフトウェアエンジニアリングプロセスのフロンティアを変えつつある。
我々は、環境に優しいプラクティスを採用してAI対応のソフトウェアシステムを構築することの影響を反映する。
論文 参考訳(メタデータ) (2024-06-26T07:47:04Z) - A Synthesis of Green Architectural Tactics for ML-Enabled Systems [10.300491626897502]
ML対応システムのための30のグリーンアーキテクチャ戦略のカタログを提供する。
アーキテクチャ戦術は、ソフトウェア品質を改善するための高度な設計手法である。
透明性を高め、その普及を促進するため、我々はオンラインで簡単に消費可能なフォーマットで戦術を利用できるようにした。
論文 参考訳(メタデータ) (2023-12-15T08:53:45Z) - Green Edge AI: A Contemporary Survey [49.47249665895926]
グリーンエッジAIに関する現代の調査を紹介する。
その可能性にもかかわらず、エッジAIは重大な課題に直面している。主な原因は、無線エッジネットワークのリソース制限と、ディープラーニング(DL)のリソース集約性との間の二分である。
我々は、エッジAIシステムにおける3つの重要なタスクに対して、トレーニングデータ取得、エッジトレーニング、エッジ推論を含むエネルギー効率の高い設計手法について検討する。
論文 参考訳(メタデータ) (2023-12-01T04:04:37Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Predictable Artificial Intelligence [67.79118050651908]
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
本稿では,予測可能なAIに関する疑問,仮説,課題を解明することを目的とする。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
本稿では,明日の生態学的課題に対応するエネルギー消費技術のパラドックスについて述べる。
これは、ユースケースや具体的な例を示すために、グリーンプレイヤー向けのAIから多くの例を引き合いに出している。
環境の次元は、AIの幅広い倫理的問題の一部であり、長期的にAIの持続可能性を保証するために不可欠である。
論文 参考訳(メタデータ) (2022-12-22T14:31:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
我々は、産業規模の機械学習ユースケースにおけるモデル開発サイクルを調べることで、AIコンピューティングの炭素フットプリントを特徴づける。
ハードウェア・ソフトウェア設計と大規模最適化がAIのカーボンフットプリント全体の削減にどのように役立つのかを、エンドツーエンドで分析する。
論文 参考訳(メタデータ) (2021-10-30T23:36:10Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。