論文の概要: Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test
- arxiv url: http://arxiv.org/abs/2406.18397v1
- Date: Wed, 26 Jun 2024 14:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:09:50.408433
- Title: Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test
- Title(参考訳): ガウスランダム場の第2次最大値とエクササイズ試験
- Authors: Azaïs Jean-Marc, Dalmao Federico, De Castro Yohann,
- Abstract要約: リーマン部分多様体上のガウス確率場の第二極大の概念を導入する。
副次的なカクライス式を利用して,最大分布の明示的な形式を導出する。
このアプローチは、これらの最大値間の間隔の評価に基づいて、正確なテストを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this article, we introduce the novel concept of the second maximum of a Gaussian random field on a Riemannian submanifold. This second maximum serves as a powerful tool for characterizing the distribution of the maximum. By utilizing an ad-hoc Kac Rice formula, we derive the explicit form of the maximum's distribution, conditioned on the second maximum and some regressed component of the Riemannian Hessian. This approach results in an exact test, based on the evaluation of spacing between these maxima, which we refer to as the spacing test. We investigate the applicability of this test in detecting sparse alternatives within Gaussian symmetric tensors, continuous sparse deconvolution, and two-layered neural networks with smooth rectifiers. Our theoretical results are supported by numerical experiments, which illustrate the calibration and power of the proposed tests. More generally, this test can be applied to any Gaussian random field on a Riemannian manifold, and we provide a general framework for the application of the spacing test in continuous sparse kernel regression. Furthermore, when the variance-covariance function of the Gaussian random field is known up to a scaling factor, we derive an exact Studentized version of our test, coined the $t$-spacing test. This test is perfectly calibrated under the null hypothesis and has high power for detecting sparse alternatives.
- Abstract(参考訳): 本稿では、リーマン部分多様体上のガウス乱体の第2次極大の概念を紹介する。
この第2の最大値は、最大値の分布を特徴づける強力なツールとして機能する。
副次的なカツライス式を用いて, リーマン・ヘッセンの最大値と回帰成分を条件に, 最大値分布の明示的な形式を導出した。
このアプローチは,これらの最大値間の間隔の評価に基づいて,正確なテストを行う。
本研究では, ガウス対称テンソル, 連続スパースデコンボリューション, およびスムーズ整流器を有する2層ニューラルネットワークにおけるスパースオルタナティブの検出における本試験の適用性を検討した。
提案実験のキャリブレーションとパワーを示す数値実験により理論的結果が得られた。
より一般に、このテストはリーマン多様体上の任意のガウス確率場に適用でき、連続スパース核回帰におけるスペーシングテストの適用のための一般的なフレームワークを提供する。
さらに, ガウス確率場の分散共分散関数をスケーリング係数まで知っていれば, 正確な学生版を導出し, $t$-spacing test を作成した。
このテストは、ヌル仮説の下で完全に校正され、スパースオルタナティブを検出する力が高い。
関連論文リスト
- A Kernel-Based Conditional Two-Sample Test Using Nearest Neighbors (with Applications to Calibration, Regression Curves, and Simulation-Based Inference) [3.622435665395788]
本稿では,2つの条件分布の違いを検出するカーネルベースの尺度を提案する。
2つの条件分布が同じである場合、推定はガウス極限を持ち、その分散はデータから容易に推定できる単純な形式を持つ。
また、条件付き適合性問題に適用可能な推定値を用いた再サンプリングベースのテストも提供する。
論文 参考訳(メタデータ) (2024-07-23T15:04:38Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Simplex Random Features [53.97976744884616]
ソフトマックスおよびガウスカーネルの非バイアス近似のための新しいランダム特徴(RF)機構であるSimplex Random Features (SimRFs)を提案する。
我々は,これらのカーネルの非バイアス推定値に対して,SimRFが最小平均二乗誤差(MSE)を提供することを示す。
ポイントワイドカーネル推定,非パラメトリック分類,スケーラブルトランスフォーマーなどの設定において,SimRFによる一貫したゲインを示す。
論文 参考訳(メタデータ) (2023-01-31T18:53:39Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
MMD (maximum mean discrepancy) two-sample test to be optimal to the terms of the separation boundary in the Hellinger distance。
スペクトル正則化に基づくMDD試験の修正を提案し,MMD試験よりも分離境界が小さく,最小限の試験が最適であることを証明した。
その結果,テストしきい値がエレガントに選択されるテストの置換変種が,サンプルの置換によって決定されることがわかった。
論文 参考訳(メタデータ) (2022-12-19T00:42:21Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Double Descent in Random Feature Models: Precise Asymptotic Analysis for
General Convex Regularization [4.8900735721275055]
より広い凸正規化項のクラスの下で回帰の一般化を正確に表現する。
我々は,本フレームワークの予測能力を数値的に示すとともに,非漸近的状態においても予測されたテスト誤差が正確であることを実験的に示す。
論文 参考訳(メタデータ) (2022-04-06T08:59:38Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Efficient approximation of experimental Gaussian boson sampling [2.805766654291013]
最近の2つの目覚しい実験は、最大144個の出力モードで、プログラム不可能な線形干渉計としきい値検出器を備えたガウスボソンサンプリング(GBS)を行った。
ここでは、これらの実験よりも全変動距離とクルバック・リーブラーの偏差がよい古典的なサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-23T17:47:06Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Bayesian ODE Solvers: The Maximum A Posteriori Estimate [30.767328732475956]
常微分方程式の数値解は非線形ベイズ推論問題として当てはまることが確立されている。
後方推定の最大値は、前者に関連するヒルベルト空間の最適補間と一致する。
開発された方法論は、これらの推定器の収束を研究するための、新しくより自然なアプローチを提供する。
論文 参考訳(メタデータ) (2020-04-01T11:39:59Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。