論文の概要: Reliable Interval Prediction of Minimum Operating Voltage Based on On-chip Monitors via Conformalized Quantile Regression
- arxiv url: http://arxiv.org/abs/2406.18536v1
- Date: Fri, 3 May 2024 19:34:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:12:00.624622
- Title: Reliable Interval Prediction of Minimum Operating Voltage Based on On-chip Monitors via Conformalized Quantile Regression
- Title(参考訳): コンフォーマル化量子回帰を用いたオンチップモニタによる最小動作電圧の信頼区間予測
- Authors: Yuxuan Yin, Xiaoxiao Wang, Rebecca Chen, Chen He, Peng Li,
- Abstract要約: 本稿では,理論的なカバレッジ保証を有する分布自由な$V_min$間隔推定手法を提案する。
産業用5nm自動車チップデータセットにおける提案手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 4.978723493174325
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting the minimum operating voltage ($V_{min}$) of chips is one of the important techniques for improving the manufacturing testing flow, as well as ensuring the long-term reliability and safety of in-field systems. Current $V_{min}$ prediction methods often provide only point estimates, necessitating additional techniques for constructing prediction confidence intervals to cover uncertainties caused by different sources of variations. While some existing techniques offer region predictions, but they rely on certain distributional assumptions and/or provide no coverage guarantees. In response to these limitations, we propose a novel distribution-free $V_{min}$ interval estimation methodology possessing a theoretical guarantee of coverage. Our approach leverages conformalized quantile regression and on-chip monitors to generate reliable prediction intervals. We demonstrate the effectiveness of the proposed method on an industrial 5nm automotive chip dataset. Moreover, we show that the use of on-chip monitors can reduce the interval length significantly for $V_{min}$ prediction.
- Abstract(参考訳): チップの最小動作電圧(V_{min}$)を予測することは、製造試験フローを改善するとともに、フィールドシステムの長期的な信頼性と安全性を確保するための重要な手法の1つである。
現状の$V_{min}$予測法は、しばしば点推定のみを提供し、異なる変化源によって生じる不確実性をカバーするために予測信頼区間を構築するための追加の技術を必要とする。
既存の手法は地域予測を提供するが、特定の分布仮定に依存したり、カバレッジ保証を提供しない。
これらの制約に対応するために,理論的なカバレッジ保証を有する分布自由な$V_{min}$間隔推定手法を提案する。
提案手法は、共形量子レグレッションとオンチップモニタを利用して、信頼性の高い予測間隔を生成する。
産業用5nm自動車チップデータセットにおける提案手法の有効性を実証する。
さらに,オンチップモニタを用いることで,V_{min}$予測の間隔を著しく短縮できることを示す。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
本研究では,トレーニングデータの破損に対して堅牢な,保証されたカバレッジ率で予測セットを生成する手法を開発した。
我々のアプローチは、i.d仮定の下で有効となる予測セットを構築するための強力なフレームワークである共形予測に基づいている。
論文 参考訳(メタデータ) (2024-06-08T08:56:47Z) - Conformalized Late Fusion Multi-View Learning [18.928543069018865]
多視点学習の不確かさの定量化は、科学的な問題における多視点データの利用の増加によって動機づけられる。
個別のビューで個別の予測器を訓練し、単一のビュー予測が利用可能になった後にそれらを組み合わせます。
本稿では,共形予測を単一ビュー予測器上で個別に行う手法として,MVCP(Multi-View Conformal Prediction)を提案する。
論文 参考訳(メタデータ) (2024-05-25T14:11:01Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning(FL)は、多くのクライアントが協力してモデルをトレーニングする機械学習フレームワークである。
我々は、量子回帰に基づく新しいコンフォメーション予測法を開発し、プライバシー制約を考慮した。
論文 参考訳(メタデータ) (2023-06-08T11:54:58Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。