論文の概要: Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps
- arxiv url: http://arxiv.org/abs/2406.18808v1
- Date: Thu, 27 Jun 2024 00:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 15:37:16.179711
- Title: Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps
- Title(参考訳): 海馬内鼻回路における結合は認知地図における構成性を促進する
- Authors: Christopher J. Kymn, Sonia Mazelet, Anthony Thomas, Denis Kleyko, E. Paxon Frady, Friedrich T. Sommer, Bruno A. Olshausen,
- Abstract要約: 本研究では,海馬形成における空間表現の規範モデルを提案する。
このモデルにより,次元をもつパターンの超線形スケーリングを含むノルミティブなデシラタが得られることを示す。
より一般的に、このモデルは海馬の形成において構成計算がどのように起こるかを定式化する。
- 参考スコア(独自算出の注目度): 8.679251532993428
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a normative model for spatial representation in the hippocampal formation that combines optimality principles, such as maximizing coding range and spatial information per neuron, with an algebraic framework for computing in distributed representation. Spatial position is encoded in a residue number system, with individual residues represented by high-dimensional, complex-valued vectors. These are composed into a single vector representing position by a similarity-preserving, conjunctive vector-binding operation. Self-consistency between the representations of the overall position and of the individual residues is enforced by a modular attractor network whose modules correspond to the grid cell modules in entorhinal cortex. The vector binding operation can also associate different contexts to spatial representations, yielding a model for entorhinal cortex and hippocampus. We show that the model achieves normative desiderata including superlinear scaling of patterns with dimension, robust error correction, and hexagonal, carry-free encoding of spatial position. These properties in turn enable robust path integration and association with sensory inputs. More generally, the model formalizes how compositional computations could occur in the hippocampal formation and leads to testable experimental predictions.
- Abstract(参考訳): 本稿では,ニューロンごとの符号化範囲と空間情報の最大化といった最適原理と,分散表現における計算の代数的枠組みを組み合わせた海馬形成における空間表現の規範モデルを提案する。
空間的位置は残余数系に符号化され、個々の残基は高次元の複素数値ベクトルで表される。
これらは、類似性保存、共役ベクトル結合演算により、位置を表す単一のベクトルに構成される。
全体位置の表現と個々の残基の表現の自己整合性は、エントルヒンナル皮質のグリッドセルモジュールに対応するモジュールを持つモジュラーアトラクタネットワークによって強制される。
ベクトル結合操作は、異なるコンテキストを空間表現に関連付けることができ、角膜皮質と海馬のモデルを生成する。
本モデルでは,次元のパターンの超線形スケーリング,ロバストな誤り訂正,空間位置のヘキサゴナルでキャリーフリーな符号化など,規範的なデシラタを実現する。
これらの特性により、堅牢な経路積分と感覚入力の関連が実現される。
より一般に、このモデルは、海馬の形成において構成計算がどのように起こるかを定式化し、テスト可能な実験的予測をもたらす。
関連論文リスト
- Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
ネットワークの潜在層内の直交関係を利用して、非線形多様体データセットの内在次元性を推定できることを示す。
微分幾何学に依拠する関係理論を概説し、対応する勾配偏光最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-08-28T20:56:35Z) - Neural Isometries: Taming Transformations for Equivariant ML [8.203292895010748]
本稿では,観測空間を汎用潜在空間にマップする方法を学習する自動エンコーダフレームワークであるNeural Isometriesを紹介する。
トレーニング済みの潜伏空間で動作する単純なオフ・ザ・シェルフ同変ネットワークは、巧妙に設計された手作りのネットワークと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-29T17:24:25Z) - AdaContour: Adaptive Contour Descriptor with Hierarchical Representation [52.381359663689004]
既存の角度ベースの輪郭記述子は、星以外の形状の損失表現に悩まされる。
AdaConは、他のディスクリプタよりも正確に形を表現できる。
論文 参考訳(メタデータ) (2024-04-12T07:30:24Z) - A Copula Graphical Model for Multi-Attribute Data using Optimal Transport [9.817170209575346]
本稿では,Cyclical Monotone Copulaという新しいコプラに基づく,新しい半パラメトリック多属性グラフィカルモデルを提案する。
高次元特性を持つ場合、次元問題の呪いに対処するために、射影単調コプラモデルが提案される。
論文 参考訳(メタデータ) (2024-04-10T04:49:00Z) - Emergence of Grid-like Representations by Training Recurrent Networks
with Conformal Normalization [48.99772993899573]
ニューラルネットワークモデルに基づくグリッドセルの六角形格子パターンの出現について検討した。
本稿では、RNNの入力速度の単純かつ一般的な等角正規化を提案する。
我々は、六角形格子パターンの出現に共形正規化が不可欠であることを示す広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-29T23:12:56Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Conformal Isometry of Lie Group Representation in Recurrent Network of
Grid Cells [52.425628028229156]
本稿では,リカレントネットワークモデルを用いたグリッドセルの特性について検討する。
グリッドセルの連続的誘引ニューラルネットワークの基盤となる,単純な非線形リカレントモデルに着目する。
論文 参考訳(メタデータ) (2022-10-06T05:26:49Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
形状空間学習に対称性を組み込む自然な方法は、形状空間(エンコーダ)への写像と形状空間(デコーダ)からの写像が関連する対称性に同値であることを問うことである。
本稿では,2つのコントリビューションを導入することで,エンコーダとデコーダの等価性を組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-03T06:41:19Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - Field Convolutions for Surface CNNs [19.897276088740995]
簡単な観測に基づいてベクトル場に作用する新しい曲面畳み込み演算子を提案する。
この定式化は、散乱演算において内在的な空間畳み込みと平行輸送を組み合わせる。
基本幾何処理タスクにおける標準ベンチマークの最先端結果を得る。
論文 参考訳(メタデータ) (2021-04-08T17:11:14Z) - Autoencoder Image Interpolation by Shaping the Latent Space [12.482988592988868]
オートエンコーダは、異なるタイプのデータセットを特徴付ける基礎となる要因を計算するための効果的なアプローチである。
トレーニング画像と整合した多様体に従うために潜在表現を形作る正規化手法を提案する。
論文 参考訳(メタデータ) (2020-08-04T12:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。