論文の概要: Autonomous Control of a Novel Closed Chain Five Bar Active Suspension via Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.18899v2
- Date: Sun, 30 Jun 2024 07:40:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:30:11.887749
- Title: Autonomous Control of a Novel Closed Chain Five Bar Active Suspension via Deep Reinforcement Learning
- Title(参考訳): 深部強化学習による新しい閉鎖5棒アクティブサスペンションの自律制御
- Authors: Nishesh Singh, Sidharth Ramesh, Abhishek Shankar, Jyotishka Duttagupta, Leander Stephen D'Souza, Sanjay Singh,
- Abstract要約: 本稿では,シャーシ安定化に着目したアクティブサスペンションシステムについて述べる。
SACをPID(Proportional Integral Derivative)コントロールと併用してシャシーを安定化した。
モデルは、周囲の障害物からの距離、障害物の高さ、シャシーの向きを利用して、サスペンションの制御リンクを正確に作動させる。
- 参考スコア(独自算出の注目度): 0.6456676618238324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Planetary exploration requires traversal in environments with rugged terrains. In addition, Mars rovers and other planetary exploration robots often carry sensitive scientific experiments and components onboard, which must be protected from mechanical harm. This paper deals with an active suspension system focused on chassis stabilisation and an efficient traversal method while encountering unavoidable obstacles. Soft Actor-Critic (SAC) was applied along with Proportional Integral Derivative (PID) control to stabilise the chassis and traverse large obstacles at low speeds. The model uses the rover's distance from surrounding obstacles, the height of the obstacle, and the chassis' orientation to actuate the control links of the suspension accurately. Simulations carried out in the Gazebo environment are used to validate the proposed active system.
- Abstract(参考訳): 惑星探査には、荒れ果てた地形のある環境での移動が必要である。
加えて、火星探査機や他の惑星探査ロボットは、機械的な損傷から守らなければならない、敏感な科学実験や部品を搭載できることが多い。
本稿では、シャシー安定化に着目したアクティブサスペンションシステムと、避けられない障害物に遭遇しながら効率的なトラバース法について述べる。
SAC(Soft Actor-Critic)とPID(Proportional Integral Derivative)制御を併用してシャシーを安定化し、低速で大きな障害物を横切る。
モデルは、周囲の障害物からの距離、障害物の高さ、シャシーの向きを利用して、サスペンションの制御リンクを正確に作動させる。
ガゼボ環境でのシミュレーションは,提案したアクティブシステムを検証するために用いられている。
関連論文リスト
- Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
都市環境のナビゲーションは、ロボットにとってユニークな課題であり、移動とナビゲーションのための革新的なソリューションを必要としている。
本研究は, 適応移動制御, 移動対応ローカルナビゲーション計画, 市内の大規模経路計画を含む, 完全に統合されたシステムを導入する。
モデルフリー強化学習(RL)技術と特権学習を用いて,多目的移動制御系を開発した。
私たちのコントローラーは大規模な都市航法システムに統合され、スイスのチューリッヒとスペインのセビリアで自律的、キロメートル規模の航法ミッションによって検証されます。
論文 参考訳(メタデータ) (2024-05-03T00:29:20Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Trajectory Tracking Control of Skid-Steering Mobile Robots with Slip and
Skid Compensation using Sliding-Mode Control and Deep Learning [0.0]
スリップとスキッドの補償は、屋外の地形をナビゲートする移動ロボットにとって不可欠である。
本稿では,現実に実現可能なオンラインスリップとスキッド補償を備えた新しい軌道追跡手法を提案する。
実験の結果,軌道追跡システムの性能は27%以上向上した。
論文 参考訳(メタデータ) (2023-09-16T03:58:03Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
本研究では,空中すべり作業に対する学習に基づく適応制御手法を提案する。
提案するコントローラ構造は,データ駆動制御とモデルベース制御を組み合わせたものである。
美術品間相互作用制御手法の微調整状態と比較して,追従誤差の低減と外乱拒否の改善を実現した。
論文 参考訳(メタデータ) (2022-06-28T16:28:59Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
本研究では,特定の歩行を構成する主要姿勢位相を捕捉する潜在空間を学習することにより,制御器のロバスト性を高めることが重要であることを示す。
本研究では,ドライブ信号マップの特定の特性が,歩幅,歩幅,立位などの歩行パラメータに直接関係していることを示す。
生成モデルを使用することで、障害の検出と緩和が容易になり、汎用的で堅牢な計画フレームワークを提供する。
論文 参考訳(メタデータ) (2022-05-02T19:49:53Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
論文 参考訳(メタデータ) (2021-11-13T04:44:53Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Learning Robust Hybrid Control Barrier Functions for Uncertain Systems [68.30783663518821]
我々は,ロバストな安全を確保する制御則を合成する手段として,ロバストなハイブリッド制御障壁関数を提案する。
この概念に基づき,データからロバストなハイブリッド制御障壁関数を学習するための最適化問題を定式化する。
我々の技術は、モデル不確実性の対象となるコンパス歩行歩行者の魅力領域を安全に拡張することを可能にする。
論文 参考訳(メタデータ) (2021-01-16T17:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。