論文の概要: Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
- arxiv url: http://arxiv.org/abs/2406.19662v1
- Date: Fri, 28 Jun 2024 05:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 17:39:39.606388
- Title: Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
- Title(参考訳): 有限基底 Kolmogorov-Arnold ネットワーク:データ駆動および物理インフォームド問題に対する領域分解
- Authors: Amanda A. Howard, Bruno Jacob, Sarah H. Murphy, Alexander Heinlein, Panos Stinis,
- Abstract要約: Kolmogorov-Arnoldネットワーク(KAN)は、機械学習のための多層パーセプトロン(MLP)に代わるものとして近年注目を集めている。
本研究では,数個の小さなkanを並列に訓練し,マルチスケール問題に対する正確な解を与えるkanの領域分解法を開発した。
- 参考スコア(独自算出の注目度): 38.53065398127086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kolmogorov-Arnold networks (KANs) have attracted attention recently as an alternative to multilayer perceptrons (MLPs) for scientific machine learning. However, KANs can be expensive to train, even for relatively small networks. Inspired by finite basis physics-informed neural networks (FBPINNs), in this work, we develop a domain decomposition method for KANs that allows for several small KANs to be trained in parallel to give accurate solutions for multiscale problems. We show that finite basis KANs (FBKANs) can provide accurate results with noisy data and for physics-informed training.
- Abstract(参考訳): Kolmogorov-Arnoldネットワーク(KAN)は、近年、科学機械学習のための多層パーセプトロン(MLP)の代替として注目されている。
しかし、カンは比較的小さなネットワークでも訓練に費用がかかる。
本研究では,有限基底物理インフォームドニューラルネットワーク(FBPINN)に着想を得て,数個の小さなkanを並列に訓練し,マルチスケール問題に対する正確な解が得られるように,kanの領域分解法を開発した。
有限基底kans (FBKANs) はノイズデータと物理インフォームドトレーニングのための正確な結果が得られることを示す。
関連論文リスト
- SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks [0.9999629695552196]
偏微分方程式(PDE)の解法として物理情報ニューラルネットワーク(PINN)が誕生した。
我々はSPIKAN(Sparable Physics-Informed Kolmogorov-Arnold Networks)を紹介する。
この新しいアーキテクチャは変数分離の原則をPIKANに適用し、各次元が個別のKAで扱われるような問題を分解する。
論文 参考訳(メタデータ) (2024-11-09T21:10:23Z) - Physics Informed Kolmogorov-Arnold Neural Networks for Dynamical Analysis via Efficent-KAN and WAV-KAN [0.12045539806824918]
物理インフォームド・コルモゴロフ・アルノルドニューラルネットワーク(PIKAN)を効率的なKANとWAV-KANにより実装する。
PIKANは従来のディープニューラルネットワークよりも優れた性能を示し、少ないレイヤで同じレベルの精度を実現し、計算オーバーヘッドを低減している。
論文 参考訳(メタデータ) (2024-07-25T20:14:58Z) - Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems [40.46280139210502]
多重忠実積層PINNとドメイン分解に基づく有限基底PINNの組み合わせを用いる。
ドメイン分解アプローチは、PINNと重ね合わせのPINNアプローチを明らかに改善する。
FBPINNアプローチは、多要素物理インフォームド・ディープ・オペレーター・ネットワークに拡張可能であることが実証された。
論文 参考訳(メタデータ) (2024-01-15T18:32:53Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。