論文の概要: MasonTigers at SemEval-2024 Task 10: Emotion Discovery and Flip Reasoning in Conversation with Ensemble of Transformers and Prompting
- arxiv url: http://arxiv.org/abs/2407.00581v1
- Date: Sun, 30 Jun 2024 03:59:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 02:36:46.457000
- Title: MasonTigers at SemEval-2024 Task 10: Emotion Discovery and Flip Reasoning in Conversation with Ensemble of Transformers and Prompting
- Title(参考訳): SemEval-2024 Task 10: Emotion Discovery and Flip Reasoning with Consembleation with Transformer and Prompting (英語)
- Authors: Al Nahian Bin Emran, Amrita Ganguly, Sadiya Sayara Chowdhury Puspo, Nishat Raihan, Dhiman Goswami,
- Abstract要約: 本稿では,SemEval-2024 Task 10におけるMasonTigersの参加について述べる。
当社のMasonTigersチームは各サブタスクにコントリビュートし、正確な感情認識と推論の手法の開発に重点を置いています。
第1タスクは0.78、第2タスクと第3タスクは0.79という印象的なF1スコアを得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we present MasonTigers' participation in SemEval-2024 Task 10, a shared task aimed at identifying emotions and understanding the rationale behind their flips within monolingual English and Hindi-English code-mixed dialogues. This task comprises three distinct subtasks - emotion recognition in conversation for Hindi-English code-mixed dialogues, emotion flip reasoning for Hindi-English code-mixed dialogues, and emotion flip reasoning for English dialogues. Our team, MasonTigers, contributed to each subtask, focusing on developing methods for accurate emotion recognition and reasoning. By leveraging our approaches, we attained impressive F1-scores of 0.78 for the first task and 0.79 for both the second and third tasks. This performance not only underscores the effectiveness of our methods across different aspects of the task but also secured us the top rank in the first and third subtasks, and the 2nd rank in the second subtask. Through extensive experimentation and analysis, we provide insights into our system's performance and contributions to each subtask.
- Abstract(参考訳): 本稿では,SemEval-2024 Task 10におけるMasonTigersの参加について述べる。
このタスクは3つの異なるサブタスクから構成される - ヒンディー語のコードミックス対話のための会話における感情認識、ヒンディー語のコードミックス対話のための感情フリップ推論、英語対話のための感情フリップ推論。
当社のMasonTigersチームは各サブタスクにコントリビュートし、正確な感情認識と推論の手法の開発に重点を置いています。
アプローチを活用することで、第1タスクで0.78、第2タスクと第3タスクの両方で0.79という印象的なF1スコアを達成しました。
この性能は,タスクの異なる側面にまたがるメソッドの有効性を裏付けるだけでなく,第1サブタスクと第3サブタスクの上位,第2サブタスクの2番目のランクも確保する。
大規模な実験と分析を通じて、システムのパフォーマンスと各サブタスクへのコントリビューションに関する洞察を提供する。
関連論文リスト
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - IITK at SemEval-2024 Task 10: Who is the speaker? Improving Emotion Recognition and Flip Reasoning in Conversations via Speaker Embeddings [4.679320772294786]
Emotion Flip Reasoning タスクのためのトランスフォーマーに基づく話者中心モデルを提案する。
サブタスク3では,タスクベースラインに対する5.9(F1スコア)の改善が提案されている。
論文 参考訳(メタデータ) (2024-04-06T06:47:44Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task [3.489826905722736]
SemEval 2024は会話におけるマルチモーダル感情原因分析のタスクを導入している。
本稿では,この課題を発話ラベリングとシーケンスラベリングの問題として扱うモデルを提案する。
このタスクの公式リーダーボードでは、私たちのアーキテクチャは8位にランクされ、リーダーボードのF1スコアは0.1759でした。
論文 参考訳(メタデータ) (2024-04-02T16:32:49Z) - SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in
Conversation (EDiReF) [61.49972925493912]
SemEval-2024 Task 10は、コードミキシングされた対話における感情の識別に焦点を当てた共有タスクである。
このタスクは3つの異なるサブタスクから構成される - コードミックス対話のための会話における感情認識、コードミックス対話のための感情フリップ推論、および英語対話のための感情フリップ推論である。
このタスクには84人の参加者が参加し、各サブタスクのF1スコアは0.70、0.79、0.76に達した。
論文 参考訳(メタデータ) (2024-02-29T08:20:06Z) - Explaining (Sarcastic) Utterances to Enhance Affect Understanding in
Multimodal Dialogues [40.80696210030204]
本稿では,マルチモーダル(皮肉)対話インスタンスを入力とし,その説明として自然言語文を生成する深層ニューラルネットワーク MOSES を提案する。
本研究では, サルカズム検出, ユーモア識別, 感情認識など, 対話型対話システムにおいて, 様々な自然言語理解タスクに対して生成した説明を活用する。
評価結果から,MOSESはSEDの最先端システムよりも平均2%高い性能を示した。
論文 参考訳(メタデータ) (2022-11-20T18:05:43Z) - M3ED: Multi-modal Multi-scene Multi-label Emotional Dialogue Database [139.08528216461502]
マルチモーダルマルチシーンマルチラベル感情対話データセットM3EDを提案する。
M3EDには56の異なるテレビシリーズの990のダイアドの感情対話があり、合計9,082回、24,449発の発声がある。
我々の知る限りでは、M3EDは中国語における最初のマルチモーダル感情対話データセットである。
論文 参考訳(メタデータ) (2022-05-09T06:52:51Z) - COSMIC: COmmonSense knowledge for eMotion Identification in
Conversations [95.71018134363976]
我々は,心的状態,出来事,因果関係など,常識の異なる要素を取り入れた新しい枠組みであるCOSMICを提案する。
我々は,COSMICが4つのベンチマークの会話データセット上で,感情認識のための最新の結果を実現することを示す。
論文 参考訳(メタデータ) (2020-10-06T15:09:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。