Quantum coherence of a long-lifetime exciton-polariton condensate
- URL: http://arxiv.org/abs/2407.00844v1
- Date: Sun, 30 Jun 2024 22:36:29 GMT
- Title: Quantum coherence of a long-lifetime exciton-polariton condensate
- Authors: Yannik Brune, Elena Rozas, Ken West, Kirk Baldwin, Loren N. Pfeiffer, Jonathan Beaumariage, Hassan Alnatah, David W. Snoke, Marc Aßmann,
- Abstract summary: We optimize the quantum coherence of a nonresonantly excited exciton-polariton condensate of long living polaritons.
By combining experimental phase space data with a displaced thermal state model, we observe how quantum coherence builds up as the system is driven above the condensation threshold.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, quantum information science has made significant progress, leading to a multitude of quantum protocols for the most diverse applications. States carrying resources such as quantum coherence are a key component for these protocols. In this study, we optimize the quantum coherence of a nonresonantly excited exciton-polariton condensate of long living polaritons by minimizing the condensate's interaction with the surrounding reservoir of excitons and free carriers. By combining experimental phase space data with a displaced thermal state model, we observe how quantum coherence builds up as the system is driven above the condensation threshold. Our findings demonstrate that a spatial separation between the condensate and the reservoir enhances the state's maximum quantum coherence directly beyond the threshold. These insights pave the way for integrating polariton systems into hybrid quantum devices and advancing applications in quantum technologies.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Entanglement Structure of Non-Gaussian States and How to Measure It [0.0]
We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
arXiv Detail & Related papers (2024-07-16T18:00:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Stable Quantum-Correlated Many Body States through Engineered Dissipation [0.6491408057780899]
We prepare low-energy states of the transverse-field Ising model using up to 49 superconducting qubits.
In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point.
Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
arXiv Detail & Related papers (2023-04-26T23:51:27Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantifying quantum coherence in polariton condensates [0.23746609573239752]
We investigate quantum features of an interacting light-matter system from a multidisciplinary perspective.
We quantify the amount of quantum coherence that results from the quantum superposition of Fock states.
arXiv Detail & Related papers (2021-03-04T13:47:45Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.