論文の概要: LASSI: An LLM-based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes
- arxiv url: http://arxiv.org/abs/2407.01638v1
- Date: Sun, 30 Jun 2024 19:36:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 19:52:16.209243
- Title: LASSI: An LLM-based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes
- Title(参考訳): LASSI:並列科学コードを翻訳するLLMベースの自動自己修正パイプライン
- Authors: Matthew T. Dearing, Yiheng Tao, Xingfu Wu, Zhiling Lan, Valerie Taylor,
- Abstract要約: 並列プログラミング言語間の翻訳を目的とした,LASSI と呼ばれる自動パイプラインフレームワークを提案する。
LASSIは、コンパイルと実行中にエラーが発生した自己修正ループを通じて、自律的な拡張を組み込む。
LASSIを検証するために,OpenMPターゲットとブートストラップ間の既存のベンチマークの双方向翻訳を強調した。
- 参考スコア(独自算出の注目度): 0.23301643766310373
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses the problem of providing a novel approach to sourcing significant training data for LLMs focused on science and engineering. In particular, a crucial challenge is sourcing parallel scientific codes in the ranges of millions to billions of codes. To tackle this problem, we propose an automated pipeline framework, called LASSI, designed to translate between parallel programming languages by bootstrapping existing closed- or open-source LLMs. LASSI incorporates autonomous enhancement through self-correcting loops where errors encountered during compilation and execution of generated code are fed back to the LLM through guided prompting for debugging and refactoring. We highlight the bi-directional translation of existing GPU benchmarks between OpenMP target offload and CUDA to validate LASSI. The results of evaluating LASSI with different application codes across four LLMs demonstrate the effectiveness of LASSI for generating executable parallel codes, with 80% of OpenMP to CUDA translations and 85% of CUDA to OpenMP translations producing the expected output. We also observe approximately 78% of OpenMP to CUDA translations and 62% of CUDA to OpenMP translations execute within 10% of or at a faster runtime than the original benchmark code in the same language.
- Abstract(参考訳): 本稿では,科学と工学に焦点をあてたLLMのための重要なトレーニングデータをソーシングするための新しいアプローチを提供することの課題に対処する。
特に重要な課題は、数百万から数十億のコードで並列的な科学的なコードをソーシングすることだ。
この問題に対処するために,既存のクローズドあるいはオープンソース LLM をブートストラップすることで並列プログラミング言語間の変換が可能な LASSI という自動パイプラインフレームワークを提案する。
LASSIには自己修正ループによる自律的な拡張が組み込まれており、コンパイル時に発生するエラーと生成されたコードの実行は、デバッグとリファクタリングのプロンプトをガイドすることによってLLMにフィードバックされる。
LASSIを検証するために、OpenMPターゲットオフロードとCUDA間の既存のGPUベンチマークの双方向変換を強調した。
4つのLCMで異なるアプリケーションコードでLASSIを評価した結果、可実行並列コードを生成するLASSIの有効性が示され、その80%がCUDAへの変換であり、85%がCUDAからOpenMPへの変換であり、期待される出力を生成する。
また、OpenMPからCUDAへの変換の約78%、CUDAからOpenMPへの変換の62%が、同じ言語のオリジナルのベンチマークコードよりも10%以内または高速な実行で実行される。
関連論文リスト
- Multi-Programming Language Sandbox for LLMs [78.99934332554963]
大規模言語モデル(LLM)用のコンパイラと分析ツールから統一的で包括的なフィードバックを提供するように設計された、アウト・オブ・ザ・ボックスのマルチプログラミング言語サンドボックス
コードのプログラミング言語を自動的に識別し、独立したサブサンドボックス内でコンパイルして実行することで、安全性と安定性を確保することができる。
論文 参考訳(メタデータ) (2024-10-30T14:46:43Z) - Unraveling the Potential of Large Language Models in Code Translation: How Far Are We? [4.616570111453259]
大規模言語モデル(LLM)は様々なタスクにおいて最先端のパフォーマンスを示すが、コード翻訳には苦労する。
コード翻訳タスクにおけるLLMの能力と能力を利用するための大規模な実証的研究を行う。
提案手法は,(1)ソースと対象言語間の中間言語を選択する中間翻訳と,(2)自己生成並列データ上でLPMを微調整する自己学習である。
論文 参考訳(メタデータ) (2024-10-13T12:20:12Z) - MEIC: Re-thinking RTL Debug Automation using LLMs [18.964523115622928]
本研究は,新しいフレームワーク,Make each Iteration Count(MEIC)を紹介する。
MEICは、構文と関数のエラーを識別し、修正するのに適している。
フレームワークを評価するため、178の共通RTLプログラミングエラーからなるオープンソースデータセットを提供する。
論文 参考訳(メタデータ) (2024-05-10T22:32:39Z) - Exploring the Impact of the Output Format on the Evaluation of Large Language Models for Code Translation [8.81447711370817]
我々は、11の人気のある命令付き大規模言語モデル(LLM)の出力を経験的に分析する。
この結果から,プロンプトエンジニアリングと正規表現の戦略的組み合わせにより,モデル生成出力からソースコードを効果的に抽出できることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T21:41:31Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Program Decomposition and Translation with Static Analysis [0.0]
大規模言語モデル(LLM)の文脈ウィンドウに対する方法レベルのプログラム分解の効果を評価する。
そこで本研究では,コンテキスト外問題により本来実行できなかった非常に大きなファイルの翻訳を可能にする方法について検討する。
論文 参考訳(メタデータ) (2024-01-22T23:49:32Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Lost in Translation: A Study of Bugs Introduced by Large Language Models
while Translating Code [5.915447908295047]
コード翻訳における一般LLMとコードLLMの能力について,大規模な実証的研究を行った。
私たちの研究は、3つのベンチマークと2つの実世界のプロジェクトからの1,700のコードサンプルの翻訳に関するものです。
LLMの正しい翻訳は2.1%から47.3%であることがわかった。
論文 参考訳(メタデータ) (2023-08-06T13:33:13Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
論文 参考訳(メタデータ) (2023-04-10T09:55:14Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。